2,155 research outputs found

    Sea-floor tectonics and submarine hydrothermal systems

    Get PDF
    The discovery of metal-depositing hot springs on the sea floor, and especially their link to chemosynthetic life, was among the most compelling and significant scientific advances of the twentieth century. More than 300 sites of hydrothermal activity and sea-floor mineralization are known on the ocean floor. About 100 of these are sites of high-temperature venting and polymetallic sulfide deposits. They occur at mid-ocean ridges (65%), in back-arc basins (22%), and on submarine volcanic arcs (12%). Although high-temperature, 350°C, black smoker vents are the most recognizable features of sea-floor hydrothermal activity, a wide range of different styles of mineralization has been found. Different volcanic substrates, including mid-ocean ridge basalt, ultramafic intrusive rocks, and more evolved volcanic suites in both oceanic and continental crust, as well as temperature-dependent solubility controls, account for the main geochemical associations found in the deposits. Although end-member hydrothermal fluids mainly originate in the deep volcanic basement, the presence of sediments and other substrates can have a large effect on the compositions of the vent fluids. In arc and backarc settings, vent fluid compositions are broadly similar to those at mid-ocean ridges, but the arc magmas also supply a number of components to the hydrothermal fluids. The majority of known black smoker vents occur on fast-spreading mid-ocean ridges, but the largest massive sulfide deposits are located at intermediate- and slow-spreading centers, at ridge-axis volcanoes, in deep backarc basins, and in sedimented rifts adjacent to continental margins. The range of deposit sizes in these settings is similar to that of ancient volcanic-associated massive sulfide (VMS) deposits. Detailed mapping, and in some cases drilling, indicates that a number of deposits contain 1 to 5 million tons (Mt) of massive sulfide (e.g., TAG hydrothermal field on the Mid-Atlantic Ridge, deposits of the Galapagos Rift, and at 13°N on the East Pacific Rise). Two sediment-hosted deposits, at Middle Valley on the Juan de Fuca Ridge and in the Atlantis II Deep of the Red Sea, are much larger (up to 15 and 90 Mt, respectively). In the western Pacific, high-temperature hydrothermal systems occur mainly at intraoceanic back-arc spreading centers (e.g., Lau basin, North Fiji basin, Mariana trough) and in arc-related rifts at continental margins (e.g., Okinawa trough). In contrast to the mid-ocean ridges, convergent margin settings are characterized by a range of different crustal thicknesses and compositions, variable heat flow regimes, and diverse magma types. These variations result in major differences in the compositions and isotopic systematics of the hydrothermal fluids and the mineralogy and bulk compositions of the associated mineral deposits. Intraoceanic back-arc basin spreading centers host black smoker vents that, for the most part, are very similar to those on the mid-ocean ridges. However, isotopic data from both the volcanic rocks and the sulfide deposits highlight the importance of subduction recycling in the origin of the magmas and hydrothermal fluids. Back-arc rifts in continental margin settings are typically sediment-filled basins, which derive their sediment load from the adjacent continental shelf. This has an insulating effect that enhances the high heat flow associated with rifting of the continental crust and also helps to preserve the contained sulfide deposits. Large hydrothermal systems have developed where initial rifting of continental crust or locally thickened arc crust has formed large calderalike sea-floor depressions, similar to those that contained major VMS-forming systems in the geologic record. Hydrothermal vents also occur in the summit calderas of submarine volcanoes at the volcanic fronts of arcs. However, this contrasts with the interpreted settings of most ancient VMS deposits, which are considered to have formed mainly during arc rifting. Hydrothermal vents associated with arc volcanoes show clear evidence of the direct input of magmatic volatiles, similar to magmatic-hydrothermal systems in subaerial volcanic arcs. Several compelling examples of submarine epithermal-style mineralization, including gold-base metal veins, have been found on submarine arc volcanoes,and this type of mineralization may be more common than is presently recognized. Mapping and sampling of the sea floor has dramatically improved geodynamic models of different submarine volcanic and tectonic settings and has helped to establish a framework for the characterization of many similar ancient terranes. Deposits forming at convergent margins are considered to be the closest analogs of ancient VMS. However, black smokers on the mid-ocean ridges continue to provide critically important information about metal transport and deposition in sea-floor hydrothermal systems of all types. Ongoing sea-floor exploration in other settings is providing clues to the diversity of mineral deposit types that occur in different environments and the conditions that are favorable for their formation

    The Current State of Global Activities Related to Deep-sea Mineral Exploration and Mining

    Get PDF
    Deep-sea mining is seen as a potential way to provide future secure metal supply to global markets. The current rush to the seafloor in areas beyond national jurisdiction indicates that sound knowledge of the geological characteritics of the various commodities, a realistic resource assessment, and a social and political discussion about the cons and pros of their exploitation that is based on facts, not myths, is required. This contribution provides the most recent information on global deep-sea mineral resources and sets the stage for detailed talks in this session

    Shallow submarine hydrothermal systems in the Aeolian Volcanic Arc, Italy

    Get PDF
    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoe

    Farm Energy: Sizing minimum ventilation to save heating energy in swine housing

    Get PDF
    Wasted heating energy due to over-ventilation is a costly problem for hog producers. Proper sizing of ventilation and use of variable speed fans can improve energy efficiency.https://lib.dr.iastate.edu/extension_ag_pubs/1028/thumbnail.jp

    Marine mineral resources The Global Rare Element Endowment of Seafloor Massive Sulfide Deposits

    Get PDF
    Over the past three decades, a large number of seafloor hydrothermal vent sites and associated sulfide deposits have been discovered in the worlds' oceans. Geochemical analysis of samples collected from vent sites worldwide suggests that seafloor sulfide deposits may contain significant base and precious metal concentrations. The present study provides the first estimate of the global rare metal endowment of these deposits. It is shown that seafloor sulfide accumulations can contain elevated concentrations of the rare elements Bi, Cd, Ga, Ge, Hg, In, Mo, Sb, Se, Te, and Tl. Although these polymetallic deposits may represent a significant repository for some of these elements, the total endowment is regarded to be limited when compared to land-based ore deposits. Potential future deep-sea mining will not likely be a significant source of these metals

    Drilling of shallow marine sulfide-sulfate mineralisation in south-eastern Tyrrhenian Sea, Italy; Seafloor sulfides, Tyrrhenian Sea, highsulfidation; hydrothermal systems, Palinuro

    Get PDF
    Semi-massive to massive sulfides with abundant late native sulfur were drilled in a shallowwater hydrothermal system in an island arc volcanic setting at the Palinuro volcanic complex in the Tyrrhenian Sea, Italy. Overall, 12.7 m of sulfide mineralisation were drilled in a sediment-filled depression at a water depth of 630 - 650 m using the lander-type Rockdrill I drill rig of the British Geological Survey. Polymetallic (Zn, Pb, Sb, As, Ag) sulfides overlie massive pyrite. The massive sulfide mineralisation contains a number of atypical minerals, including enargite-famatinite, tennantite-tetrahedrite, stibnite, bismuthinite, and Pb-,Sb-, and Ag-sulfosalts, that do not commonly occur in mid-ocean ridge massive sulfides. Analogous to subaerial epithermal deposits, the occurrence of these minerals and the presence of abundant native sulfur suggest an intermediate to high sulfidation and/or high oxididation state of the hydrothermal fluids in contrast to the near-neutral and reducing fluids from which base metal-rich massive sulfides along mid-ocean ridges typically form. Oxidised conditions during sulfide deposition are likely related to the presence of magmatic volatiles in the mineralising fluids that were derived from a degassing magma chamber below the Palinuro volcanic complex
    • …
    corecore