2,593 research outputs found

    Nonregenerative MIMO Relaying with Optimal Transmit Antenna Selection

    Full text link
    We derive optimal SNR-based transmit antenna selection rules at the source and relay for the nonregenerative half duplex MIMO relay channel. While antenna selection is a suboptimal form of beamforming, it has the advantage that the optimization is tractable and can be implemented with only a few bits of feedback from the destination to the source and relay. We compare the bit error rate of optimal antenna selection at both the source and relay to other proposed beamforming techniques and propose methods for performing the necessary limited feedback

    Half-filled Hubbard Model on a Bethe lattice with next-nearest neighbor hopping

    Full text link
    We study the interplay between N\'eel-antiferromagnetism and the paramagnetic metal-insulator-transition (PMIT) on a Bethe lattice with nearest and next-nearest eighbor hopping t1t_1 and t2t_2. We concentrate in this paper on the situation at half-filling. For t2/t1→1t_2/t_1\to 1 the PMIT outgrows the antiferromagnetic phase and shows a scenario similar to V2_2O3_3. In this parameter regime we also observe a novel magnetic phase.Comment: 8 pages, 10 figure

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin

    Thirty Years of New Mexico Architecture Magazine

    Get PDF

    Information Superhighway Or Technological Sewer: What Will It Be?

    Get PDF

    There Is a Need to Regulate Indecency on the Internet

    Get PDF

    Location Spoofing Detection for VANETs by a Single Base Station in Rician Fading Channels

    Full text link
    In this work we examine the performance of a Location Spoofing Detection System (LSDS) for vehicular networks in the realistic setting of Rician fading channels. In the LSDS, an authorized Base Station (BS) equipped with multiple antennas utilizes channel observations to identify a malicious vehicle, also equipped with multiple antennas, that is spoofing its location. After deriving the optimal transmit power and the optimal directional beamformer of a potentially malicious vehicle, robust theoretical analysis and detailed simulations are conducted in order to determine the impact of key system parameters on the LSDS performance. Our analysis shows how LSDS performance increases as the Rician K-factor of the channel between the BS and legitimate vehicles increases, or as the number of antennas at the BS or legitimate vehicle increases. We also obtain the counter-intuitive result that the malicious vehicle's optimal number of antennas conditioned on its optimal directional beamformer is equal to the legitimate vehicle's number of antennas. The results we provide here are important for the verification of location information reported in IEEE 1609.2 safety messages.Comment: 6 pages, 5 figures, Added further clarification on constraints imposed on the detection minimization strategy. Minor typos fixe
    • …
    corecore