4,315 research outputs found

    Eldoret, Kenya: Creating a Music Experience for Street Youth

    Get PDF
    The authors of this essay completed an advance pharmacy practice experience in adult medicine at Moi Teaching and Referral Hospital in Eldoret, Kenya. In this article, they describe their efforts to establish a music experience program with the Tumaini Innovation Center for street children while on rotation in Eldoret, Kenya. Through the foundation of the program, they hope to provide an outlet for the children to express themselves while filling a gap in fine arts training provided by the center

    Enhanced Ammonia Oxidation Catalysis by a Low-Spin Iron Complex Featuring Cis Coordination Sites

    Get PDF
    The goal of using ammonia as a solar fuel motivates the development of selective ammonia oxidation (AO) catalysts for fuel cell applications. Herein, we describe Fe-mediated AO electrocatalysis with [(bpyPy₂Me)Fe(MeCN)₂]²⁺, exhibiting the highest turnover number (TON) reported to date for a molecular system. To improve on our recent report of a related iron AO electrocatalyst, [(TPA)Fe(MeCN)₂]²⁺ (TON of 16), the present [(bpyPy₂Me)Fe(MeCN)₂]²⁺ system (TON of 149) features a stronger-field, more rigid auxiliary ligand that maintains cis-labile sites and a dominant low-spin population at the Fe(II) state. The latter is posited to mitigate demetalation and hence catalyst degradation by the presence of a large excess of ammonia under the catalytic conditions. Additionally, the [(bpyPy₂Me)Fe(MeCN)₂]²⁺ system exhibits a substantially faster AO rate (ca. 50×) at significantly lower (∼250 mV) applied bias compared to [(TPA)Fe(MeCN)₂]²⁺. Electrochemical data are consistent with an initial E₁ net H-atom abstraction step that furnishes the cis amide/ammine complex [(bpyPy₂Me)Fe(NH₂)(NH₃)]²⁺, followed by the onset of catalysis at E₂. Theoretical calculations suggest the possibility of N–N bond formation via multiple thermodynamically plausible pathways, including both reductive elimination and ammonia nucleophilic attack. In sum, this study underscores that Fe, an earth-abundant metal, is a promising metal for further development in metal-mediated AO catalysis by molecular systems

    A homoleptic phosphine adduct of Tl(I)

    Get PDF
    A homoleptic phosphine adduct of thallium(I) supported by a tris(phosphino)borate ligand has been isolated and structurally characterized

    Evaluation of \u3ci\u3ePaspalum\u3c/i\u3e spp. with Adaptation to Poorly Drained Soils in the Tropical Americas

    Get PDF
    A collection of Paspalum accessions obtained from Brazil was tested for their adaptation to poorly drained soils. Three accessions were selected based on their DM production and nutritive value. Productivity and quality of these three accessions was stable over the periods of maximum and minimum rainfall, giving potential for continuous forage supply throughout the year in the tropical Americas. Grazing trials for the selected accessions are underway

    Fe(I)-Mediated Reductive Cleavage and Coupling of CO_2:  An Fe^(II)(μ-O,μ-CO)Fe^(II) Core

    Get PDF
    THF solutions of a new iron(I) source, [PhBP^(CH2_Cy_3)]Fe ([PhBP^(CH_2Cy_3)] = [PhBP(CH_2P(CH_2Cy)_2)_3]-), effect the reductive cleavage of CO_2 via O-atom transfer at ambient temperature. The dominant reaction pathway is bimetallic and leads to the formation of a structurally unprecedented diiron Fe^(II)(μ-O)(μ-CO)Fe^(II) core. X-ray data are also available to suggest that bimetallic reductive CO_2 coupling to generate oxalate occurs as a minor reaction pathway. These initial observations forecast a diverse reaction landscape between CO_2 and iron(I) synthons

    CO_2 reduction by Fe(I): solvent control of C-O cleavage versus C-C coupling

    Get PDF
    This manuscript explores the product distribution of the reaction of carbon dioxide with reactive iron(I) complexes supported by tris(phosphino)borate ligands, [PhBP^R_3]- ([PhBP^R_3]- =[PhB(CH_2PR_2)_3]-; R = CH_2Cy,Ph, ^iPr, mter; mter = 3,5-meta-terphenyl). Our studies reveal an interesting and unexpected role for the solvent medium with respect to the course of the CO_2 activation reaction. For instance, exposure of methylcyclohexane (MeCy) solutions of [PhBP^(CH_2Cy)_3 ]Fe(PR’_3) to CO_2 yields the partial decarbonylation product {[PhBP^(CH_2Cy)_3 ]Fe}_2(µ-O)(µ-CO). When the reaction is instead carried out in benzene or THF, reductive coupling of CO_2 occurs to give the bridging oxalate species {[PhBP^(CH_2Cy_3 ]Fe}_2(µ- κOO’: κOO’-oxalato). Reaction studies aimed at understanding this solvent effect are presented, and suggest that the product profile is ultimately determined by the ability of the solvent to coordinate the iron center. When more sterically encumbering auxiliary ligands are employed to support the iron(I) center (i.e., [PhBP^(Ph)_3]- and [PhBP^(iPr)_3 ]-), complete decarbonylation is observed to afford structurally unusual diiron(II) products of the type {[PhBP^R_3]Fe}_2(µ-O). A mechanistic hypothesis that is consistent with the collection of results described is offered, and suggests that reductive coupling of CO_2 likely occurs from an electronically saturated “Fe^(II)–CO_2-” species

    Regulation of Human Separase by Securin Binding and Autocleavage

    Get PDF
    AbstractBackground: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.Results: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.Conclusions: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation

    Gravitational Redshift, Equivalence Principle, and Matter Waves

    Full text link
    We review matter wave and clock comparison tests of the gravitational redshift. To elucidate their relationship to tests of the universality of free fall (UFF), we define scenarios wherein redshift violations are coupled to violations of UFF ("type II"), or independent of UFF violations ("type III"), respectively. Clock comparisons and atom interferometers are sensitive to similar effects in type II and precisely the same effects in type III scenarios, although type III violations remain poorly constrained. Finally, we describe the "Geodesic Explorer," a conceptual spaceborne atom interferometer that will test the gravitational redshift with an accuracy 5 orders of magnitude better than current terrestrial redshift experiments for type II scenarios and 12 orders of magnitude better for type III.Comment: Work in progress. 11 page

    The tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils

    Get PDF
    Mice carrying the Tight skin (Tsk) mutation harbor a genomic duplication within the fibrillin-1 (Fbn 1) gene that results in a larger than normal in-frame Fbn 1 transcript. In this study, the consequences of the Tsk mutation for fibrillin-containing microfibrils have been examined. Dermal fibroblasts from Tsk/+ mice synthesized and secreted both normal fibrillin (approximately 330 kD) and the mutant oversized Tsk fibrillin-1 (approximately 450 kD) in comparable amounts, and Tsk fibrillin-1 was stably incorporated into cell layers. Immunohistochemical and ultrastructural analyses of normal and Tsk/+ mouse skin highlighted differences in the gross organization and distribution of microfibrillar arrays. Rotary shadowing of high Mr preparations from Tsk/+ skin demonstrated the presence of abundant beaded microfibrils. Some of these had normal morphology and periodicity, but others were distinguished by diffuse interbeads, longer periodicity, and tendency to aggregate. The presence of a structurally abnormal population of microfibrils in Tsk/+ skin was unequivocally demonstrated after calcium chelation and in denaturating conditions. Scanning transmission electron microscopy highlighted the presence of more mass in Tsk/+ skin microfibrils than in normal mice skin microfibrils. These data indicate that Tsk fibrillin-1 polymerizes and becomes incorporated into a discrete population of beaded microfibrils with altered molecular organization

    Communication: Bubbles, Crystals, and Laser-Induced Nucleation

    Get PDF
    Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2bubblenucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals
    corecore