3 research outputs found

    Infrared and Raman screening of seized novel psychoactive substances:a large scale study of >200 samples

    Get PDF
    The potential of IR absorption and Raman spectroscopy for rapid identification of novel psychoactive sub- stances (NPS) has been tested using a set of 221 unsorted seized samples suspected of containing NPS. Both IR and Raman spectra showed large variation between the different sub-classifications of NPS and smaller, but still distinguishable, differences between closely related compounds within the same class. In initial tests, screening the samples using spectral searching against a limited reference library allowed only 41% of the samples to be fully identified. The limiting factor in the identification was the large number of active compounds in the seized samples for which no reference vibrational data were available in the libraries rather than poor spectral quality. Therefore, when 33 of these compounds were independently identified by NMR and mass spectrometry and their spectra used to extend the libraries, the percentage of samples identified by IR and Raman screening alone increased to 76%, with only 7% of samples having no identifiable constituents. This study, which is the largest of its type ever carried out, therefore demon- strates that this approach of detecting non-matching samples and then identifying them using standard analytical methods has considerable potential in NPS screening since it allows rapid identification of the constituents of the majority of street quality samples. Only one complete feedback cycle was carried out in this study but there is clearly the potential to carry out continuous identification/updating when this system is used in operational settings

    Raman Spectroscopy for Forensic Examination of β-Ketophenethylamine “Legal Highs”: Reference and Seized Samples of Cathinone Derivatives

    No full text
    Raman spectra of a representative range of beta-ketophenethylamine (beta-KP), the rapidly growing family of cathinone-related "legal high" recreational drugs, have been recorded. These spectra showed characteristic changes that were associated with the pattern of substitution on the aromatic rings, for example, the compounds carrying substituents at the 4- position could be distinguished from 3,4-methylenedioxy "ecstasy" derivatives. They also showed small but detectable changes with differences in substitution on the ethylamine substituent. These features allowed the beta-KPs present in seized casework samples to be identified. The seized samples typically contained only small amounts of bulking agents, which meant that the band intensities of these components within averaged data were very small. In contrast, grid sampling normally gave at least some spectra which had a higher than average proportion of the bulking agent(s), which allowed them to also be identified. This study therefore demonstrates that Raman spectroscopy can be used both to provide a rapid, non-destructive technique for identification of this class of drugs in seized samples and to detect minor constituents, giving a composition profile which can be used for drugs intelligence work. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved

    Surface-enhanced Raman spectroscopy of novel psychoactive substances using polymer-stabilized Ag nanoparticle aggregates

    Get PDF
    A set of seized “legal high” samples and pure novel psychoactive substances have been examined by surface-enhanced Raman spectroscopy using polymer-stabilized Ag nanoparticle (Poly-SERS) films. The films both quenched fluorescence in bulk samples and allowed identification of μg quantities of drugs collected with wet swabs from contaminated surfaces
    corecore