44,004 research outputs found

    Atomic hydrogen maser active oscillator cavity and bulb design optimization

    Get PDF
    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices

    Apollo experience report: Guidance and control systems - Digital autopilot design development

    Get PDF
    The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer

    Self-organized Criticality and Absorbing States: Lessons from the Ising Model

    Full text link
    We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but closer examination of the mechanism reveals that it can be used for any continuous phase transition. We used the Ising model as well as the Manna model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation rates with system size.Our findings limit the explanatory power of the mechanism to non-universal critical behavior.Comment: 5 pages, 2 figures, REVTeX

    The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds: III. The Serpens Cloud in CO J=2-1 and 13CO J=2-1 Emission

    Full text link
    We mapped 12CO and 13CO J = 2-1 emission over 1.04 square deg of the Serpens molecular cloud with 38 arcsec spatial and 0.3 km/s spectral resolution using the Arizona Radio Observatory Heinrich Hertz Submillimeter telescope. Our maps resolve kinematic properties for the entire Serpens cloud. We also compare our velocity moment maps with known positions of Young Stellar Objects (YSOs) and 1.1 mm continuum emission. We find that 12CO is self-absorbed and 13CO is optically thick in the Serpens core. Outside of the Serpens core, gas appears in filamentary structures having LSR velocities which are blue-shifted by up to 2 km/s relative to the 8 km/s systemic velocity of the Serpens cloud. We show that the known Class I, Flat, and Class II YSOs in the Serpens core most likely formed at the same spatial location and have since drifted apart. The spatial and velocity structure of the 12CO line ratios implies that a detailed 3-dimensional radiative transfer model of the cloud will be necessary for full interpretation of our spectral data. The starless cores region of the cloud is likely to be the next site of star formation in Serpens.Comment: 41 pages, 15 figure

    Generalized (m,k)-Zipf law for fractional Brownian motion-like time series with or without effect of an additional linear trend

    Full text link
    We have translated fractional Brownian motion (FBM) signals into a text based on two ''letters'', as if the signal fluctuations correspond to a constant stepsize random walk. We have applied the Zipf method to extract the ζ′\zeta ' exponent relating the word frequency and its rank on a log-log plot. We have studied the variation of the Zipf exponent(s) giving the relationship between the frequency of occurrence of words of length m<8m<8 made of such two letters: ζ′\zeta ' is varying as a power law in terms of mm. We have also searched how the ζ′\zeta ' exponent of the Zipf law is influenced by a linear trend and the resulting effect of its slope. We can distinguish finite size effects, and results depending whether the starting FBM is persistent or not, i.e. depending on the FBM Hurst exponent HH. It seems then numerically proven that the Zipf exponent of a persistent signal is more influenced by the trend than that of an antipersistent signal. It appears that the conjectured law ζ′=∣2H−1∣\zeta ' = |2H-1| only holds near H=0.5H=0.5. We have also introduced considerations based on the notion of a {\it time dependent Zipf law} along the signal.Comment: 24 pages, 12 figures; to appear in Int. J. Modern Phys

    Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts

    Get PDF
    AbstractBackgroundWhen the infarct border zone is stimulated prematurely, a unidirectional block line (UBL) can form and lead to double-loop (figure-of-eight) reentrant ventricular tachycardia (VT) with a central isthmus. The isthmus is composed of an entrance, center, and exit. It was hypothesized that for certain stimulus site locations and coupling intervals, the UBL would coincide with the isthmus entrance boundary, where infarct border zone thickness changes from thin-to-thick in the travel direction of the premature stimulus wavefront.MethodA quantitative model was developed to describe how thin-to-thick changes in the border zone result in critically convex wavefront curvature leading to conduction block, which is dependent upon coupling interval. The model was tested in 12 retrospectively analyzed postinfarction canine experiments. Electrical activation was mapped for premature stimulation and for the first reentrant VT cycle. The relationship of functional conduction block forming during premature stimulation to functional block during reentrant VT was quantified.ResultsFor an appropriately placed stimulus, in accord with model predictions: 1. The UBL and reentrant VT isthmus lateral boundaries overlapped (error: 4.8±5.7mm). 2. The UBL leading edge coincided with the distal isthmus where the center-entrance boundary would be expected to occur. 3. The mean coupling interval was 164.6±11.0ms during premature stimulation and 190.7±20.4ms during the first reentrant VT cycle, in accord with model calculations, which resulted in critically convex wavefront curvature and functional conduction block, respectively, at the location of the isthmus entrance boundary and at the lateral isthmus edges.DiscussionReentrant VT onset following premature stimulation can be explained by the presence of critically convex wavefront curvature and unidirectional block at the isthmus entrance boundary when the premature stimulation interval is sufficiently short. The double-loop reentrant circuit pattern is a consequence of wavefront bifurcation around this UBL followed by coalescence, and then impulse propagation through the isthmus. The wavefront is blocked from propagating laterally away from the isthmus by sharp increases in border zone thickness, which results in critically convex wavefront curvature at VT cycle lengths

    Investigation and study of a multi-aperture antenna system final report, 1 jan. - 1 apr. 1964

    Get PDF
    Multiple aperture adaptive antenna system for telemetry reception from remote space vehicle
    • …
    corecore