7 research outputs found

    Simulation-based Efficiency Gain Analysis of 21.2%-efficient Screen-printed PERC Solar Cells

    Get PDF
    Passivated Emitter and Rear Cells (PERC) with efficiencies well above 20% are likely to become the next mass production technology. A quantification of all power loss mechanisms of such industrial PERC cells is helpful in prioritizing future efficiency improvement measures. We report on a numerical simulation of the power losses of a 21.2%-efficient industrial PERC cell using extensive experimental input data. Our synergetic efficiency gain analysis relies on deactivating single power loss mechanisms in the simulation at a time to access the full potential power gain related to that mechanism. The complete analysis therefore explains the efficiency gap between the industrial PERC solar cell and the theoretical maximum efficiency of a crystalline Si solar cell. Based on the simulations, the largest single loss mechanism is front grid shadowing followed by recombination in the emitter and its surface. All individual resistive losses, all individual optical losses and all (avoidable) individual recombination losses sum up to efficiency gains of 0.8%, 1.6%, and 1.3%, respectively, which is 3.7% in total. The efficiency gap between real and ideal solar cell is, however, much larger with 7.3%. The discrepancy is mainly due to the non-linear behaviour of recombination-based power losses which adds synergetic efficiency enhancements

    A comparison of models to optimize Partial Rear Contact solar cells

    Get PDF
    The optimization of solar cells with localized rear contacts usually requires numerical simulation. Here we compare Sentaurus Device to a simpler Conductive Boundary (CoBo) simulator and to an approximate Geometric model. Optimization examples are given for devices with linear rear contacts in low and high injection conditions. The three modelling tools are in good agreement for high quality devices with negligible bulk and rear surface recombination. Discrepancies between the three models, generally small, are identified and explained

    Simultaneous Contacting and Interconnection of Passivated Emitter and Rear Solar Cells

    Get PDF
    The back end process of passivated emitter and rear cells (PERC) consists of at least one laser process and three screen-printing steps followed by the stringing and tabbing of the cells. To reduce the number of steps we have developed a process that metallizes the rear side including contact formation and simultaneously interconnects the cells. We attach an Al foil to an encapsulant layer. By laser processing we form 'laser-fired and bonding contacts' (LFBC) on the passivated rear side of the solar cells. The Al foil contacting the rear is laser welded to the Ag screen-printed front side metallization of the next cell and thus forms the cell interconnection. The laser contacts on the rear show a surface recombination velocity Scont for the contact regions of cm/s and a contact resistivity of 3.52 m?cm2. We present a first proof-of concept module combining the in-laminate Ag-Al laser welding and the LFBC reaching an efficiency of 18.4%. In accelerated aging test modules show no degradation (< 1% in efficiency) after 100 humidity-free cycles.Federal Ministry for Environment, Nature Conservation, and Nuclear Safety/FKZ/0325192State of Lower Saxon

    Backscattered polarimetric detection from biological tissue

    No full text
    Summarization: In this study, backscattering optical measurements from this scattering media and biological tissue were performed using different polarimetric detection techniques. The outcome of this study may facilitate the early diagnosis, monitoring, and assessment of disease progress, with high sensitivity and specificity.Presented on
    corecore