858 research outputs found

    Wind tunnel site analysis of Dow Chemical Facility at Rocky Flats, Colorado, part II

    Get PDF
    Prepared for Research and Ecology, Rocky Flats Division, Dow Chemical Company.CER72-73RNM-JAP-TGH-16.March 1973.Includes bibliographical references.This report deals with two separate problems occurring at the Dow Chemical Company Plutonium Recovery Facility, Rocky Flats Division, namely the dispersion of potential effluents and the protection of parking areas from the destructive action of high velocity west winds by the use of shelterbelts. The dispersion study is a continuation of a previous study and consisted of modeling the geography, wind and turbulence profiles and effluent releases in a wind tunnel study. Dispersion and trajectory behavior was determined by the use of Krypton-85 as a tracer gas. The results reinforce the conclusion advanced in the previous study that Pasquill-Gifford prediction methods apply well to the site. The shelterbelt study consisted of evaluating the effects of porosity, barrier height and length, geometric configuration of barriers, parking lot orientation and wind approach angle upon the protection of parking areas from high velocity wind action in assaulting vehicles with abrasive particles. Tests were accomplished by observing the effectiveness of the wind in transporting a zinc oxide-mineral oil suspension. This effectiveness was correlated to velocity reduction and wind profile modification effectiveness of shelterbelts. It was found that the most effective use of shelterbelts could be accomplished if the parking lot were reoriented with the long side running in a north-south direction

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Finitely-Generated Projective Modules over the Theta-deformed 4-sphere

    Full text link
    We investigate the "theta-deformed spheres" C(S^{3}_{theta}) and C(S^{4}_{theta}), where theta is any real number. We show that all finitely-generated projective modules over C(S^{3}_{theta}) are free, and that C(S^{4}_{theta}) has the cancellation property. We classify and construct all finitely-generated projective modules over C(S^{4}_{\theta}) up to isomorphism. An interesting feature is that if theta is irrational then there are nontrivial "rank-1" modules over C(S^{4}_{\theta}). In that case, every finitely-generated projective module over C(S^{4}_{\theta}) is a sum of a rank-1 module and a free module. If theta is rational, the situation mirrors that for the commutative case theta=0.Comment: 34 page

    Comparative modeling of infrared fiber lasers

    Get PDF
    The modeling and design of fiber lasers facilitate the process of their practical realization. Of particular interest during the last few years is the development of lanthanide ion-doped fiber lasers that operate at wavelengths exceeding 2000 nm. There are two main host glass materials considered for this purpose, namely fluoride and chalcogenide glasses. Therefore, this study concerned comparative modeling of fiber lasers operating within the infrared wavelength region beyond 2000 nm. In particular, the convergence properties of selected algorithms, implemented within various software environments, were studied with a specific focus on the central processing unit (CPU) time and calculation residual. Two representative fiber laser cavities were considered: One was based on a chalcogenide-selenide glass step-index fiber doped with trivalent dysprosium ions, whereas the other was a fluoride step-index fiber doped with trivalent erbium ions. The practical calculation accuracy was also assessed by comparing directly the results obtained from the different models

    High-resolution state-selected ion-molecule reaction studies using pulsed field ionization photoelectron-secondary ion coincidence method

    Get PDF
    We have developed an octopole-quadrupole photoionization apparatus at the Advanced Light Source for absolute integral cross-section measurements of rovibrational-state-selected ion-molecule reactions. This apparatus consists of a high-resolution photoionization ion source, a wired ion gate lens, a dual radio-frequency (rf) octopole ion guide reaction gas cell, and a quadrupole mass spectrometer for reactant and product ion detection. The unique feature of this apparatus is the implementation of the high-resolution pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence (PFI-PEPICO) technique, which has allowed the rotational-state selection of diatomic ions for ion-molecule reaction studies. The novel application of the wired ion gate lens for the rejection of false coincidence background ions is described. This application, along with the differential-ion-gate scheme, has made possible the measurements of rovibrational-state-selected absolute integral reaction cross sections for ion-molecule collisions using the PFI-PE-secondary ion coincidence PFI-PESICO method. The successful measurement of absolute state-selected cross sections for H2 + (X,v+,N+)+Ar(Ne) with v+ up to 17 [the third to the last vibrational state of H2+(X)] demonstrates the high sensitivity of this differential-ion-gate PFI-PESICO method. In order to gain a detailed understanding and to obtain optimal performance of the wired ion gate lens for PFI-PESICO measurements, we have carried out ion trajectory calculations of reactant ions between the photoionization region and the rf-octopole ion guide. On the basis of these calculations, possible future improvements for the application of this differential-ion-gate PFI-PESICO scheme are discussed

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result
    • …
    corecore