39 research outputs found

    Free Energy of Coupled Oscillators: Lamb Shifts and van der Waals Interactions

    Full text link
    The Helmholtz free energy of oscillators in thermal equilibrium with electromagnetic radiation is obtained from the Pauli-Hellmann-Feynman theorem and applied to some aspects of Lamb shifts and van der Waals interactions.Comment: This article belongs to the special issue of Acta Physica Polonica A printed in honor of Professor Iwo Bialynicki-Birula on the occasion of his 90th birthday (Ed. Tomasz Sowinski, DOI:10.12693/APhysPolA.143.S0

    Complementarity and uncertainty relations for matter wave interferometry

    Full text link
    We establish a rigorous quantitative connection between (i) the interferometric duality relation for which-way information and fringe visibility and (ii) Heisenberg's uncertainty relation for position and modular momentum. We apply our theory to atom interferometry, wherein spontaneously emitted photons provide which way information, and unambiguously resolve the challenge posed by the metamaterial `perfect lens' to complementarity and to the Heisenberg-Bohr interpretation of the Heisenberg microscope thought experiment.Comment: nine pages, five figure

    Electromagnetic Momentum in Dispersive Dielectric Media

    Full text link
    When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by D.F. Nelson [Phys. Rev. A 44, 3985 (1991)]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.Comment: 9 pages. To be published by Optics Communication

    Effect of quantum and thermal jitter on the feasibility of Bekenstein’s proposed experiment to search for Planck-scale signals

    Get PDF
    A proposed experiment to test whether space is discretized [J. D. Bekenstein, Phys. Rev. D 86, 124040 (2012); Found. Phys. 44, 452 (2014)] is based on the supposed impossibility of an incident photon causing a displacement of a transparent block by less than the Planck length. An analysis of the quantum and thermal jitter of the block shows that it greatly diminishes the possibility that the experiment could reveal Planck-scale signals

    Atomic states in optical traps near a planar surface

    Full text link
    In this work we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the modifications to the ordinary Wannier-Stark states in presence of a surface and we characterize the energy shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an effective model describing the finite size of the atom in order to regularize the energy corrections. In addition, the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their experimental observability are investigated.Comment: 12 pages, 8 figure
    corecore