66 research outputs found
Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis
We study numerically and analytically the dynamical (AC) conductance through
a two-dot system, where only one of the dots is coupled to the leads but it is
also side-coupled to the other dot through an antiferromagnetic exchange (RKKY)
interaction. In this case the RKKY interaction gives rise to a ``two-stage
Kondo effect'' where the two spins are screened by two consecutive Kondo
effects. We formulate a renormalized scaling theory that captures remarkably
well the cross-over from the strongly conductive correlated regime to the low
temperature low conductance state. Our analytical formulas agree well with our
numerical renormalization group results. The frequency dependent current noise
spectrum is also discussed.Comment: 6 pages, 7 figure
Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime
Using the time-dependent non-crossing approximation, we calculate the
transient response of the current through a quantum dot subject to a finite
bias when the dot level is moved suddenly into a regime where the Kondo effect
is present. After an initial small but rapid response, the time-dependent
conductance is a universal function of the temperature, bias, and inverse time,
all expressed in units of the Kondo temperature. Two timescales emerge: the
first is the time to reach a quasi-metastable point where the Kondo resonance
is formed as a broad structure of half-width of the order of the bias; the
second is the longer time required for the narrower split peak structure to
emerge from the previous structure and to become fully formed. The first time
can be measured by the gross rise time of the conductance, which does not
substantially change later while the split peaks are forming. The second time
characterizes the decay rate of the small split Kondo peak (SKP) oscillations
in the conductance, which may provide a method of experimental access to it.
This latter timescale is accessible via linear response from the steady
stateand appears to be related to the scale identified in that manner [A.
Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page
Energy-resolved inelastic electron scattering off a magnetic impurity
We study inelastic scattering of energetic electrons off a Kondo impurity. If
the energy E of the incoming electron (measured from the Fermi level) exceeds
significantly the Kondo temperature T_K, then the differential inelastic
cross-section \sigma (E,w), i.e., the cross-section characterizing scattering
of an electron with a given energy transfer w, is well-defined. We show that
\sigma (E,w) factorizes into two parts. The E-dependence of \sigma (E,w) is
logarithmically weak and is due to the Kondo renormalization of the effective
coupling. We are able to relate the w-dependence to the spin-spin correlation
function of the magnetic impurity. Using this relation, we demonstrate that in
the absence of magnetic field the dynamics of the impurity spin causes the
electron scattering to be inelastic at any temperature. Quenching of the spin
dynamics by an applied magnetic field results in a finite elastic component of
the electron scattering cross-section. The differential scattering
cross-section may be extracted from the measurements of relaxation of hot
electrons injected in conductors containing localized spins.Comment: 15 pages, 9 figures; final version as published, minor changes,
reference adde
Orbital Localization and Delocalization Effects in the U 5f^2 Configuration: Impurity Problem
Anderson models, based on quantum chemical studies of the molecule of
U(C_8H_8)_2, are applied to investigate the problem of an U impurity in a
metal. The special point here is that the U 5f-orbitals are divided into two
subsets: an almost completely localized set and a considerably delocalized one.
Due to the crystal field, both localized and delocalized U 5f-orbitals affect
the low-energy physics. A numerical renormalization group study shows that
every fixed point is characterized by a residual local spin and a phase shift.
The latter changes between 0 and \pi/2, which indicates the competition between
two different fixed points. Such a competition between the different local
spins at the fixed points reflects itself in the impurity magnetic
susceptibility at high temperatures. These different features cannot be
obtained if the special characters of U 5f-orbitals are neglected.Comment: 4 pages, REVTeX, email to [email protected]
X-boson cumulant approach to the periodic Anderson model
The Periodic Anderson Model (PAM) can be studied in the infinite U limit by
employing the Hubbard X operators to project out the unwanted states. We have
already studied this problem employing the cumulant expansion with the
hybridization as perturbation, but the probability conservation of the local
states (completeness) is not usually satisfied when partial expansions like the
Chain Approximation (CHA) are employed. Here we treat the problem by a
technique inspired in the mean field approximation of Coleman's slave-bosons
method, and we obtain a description that avoids the unwanted phase transition
that appears in the mean-field slave-boson method both when the chemical
potential is greater than the localized level Ef at low temperatures (T) and
for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in
the tex
A Tunable Two-impurity Kondo system in an atomic point contact
Two magnetic atoms, one attached to the tip of a Scanning Tunneling
Microscope (STM) and one adsorbed on a metal surface, each constituting a Kondo
system, have been proposed as one of the simplest conceivable systems
potentially exhibiting quantum critical behaviour. We have succeeded in
implementing this concept experimentally for cobalt dimers clamped between an
STM tip and a gold surface. Control of the tip-sample distance with
sub-picometer resolution allows us to tune the interaction between the two
cobalt atoms with unprecedented precision. Electronic transport measurements on
this two-impurity Kondo system reveal a rich physical scenario which is
governed by a crossover from local Kondo screening to non-local singlet
formation due to antiferromagnetic coupling as a function of separation of the
cobalt atoms.Comment: 22 pages, 5 figure
Low temperature transport in AC-driven Quantum Dots in the Kondo regime
We present a fully nonequilibrium calculation of the low temperature
transport properties of a quantum dot in the Kondo regime when an AC potential
is applied to the gate voltage. We solve a time dependent Anderson model with
finite on-site Coulomb interaction. The interaction self-energy is calculated
up to second order in perturbation theory in the on-site interaction, in the
context of the Keldysh non-equilibrium technique, and the effect of the AC
voltage is taken into account exactly for all ranges of AC frequencies and AC
intensities. The obtained linear conductance and time-averaged density of
states of the quantum dot evolve in a non trivial way as a function of the AC
frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure
Inherent limits of light-level geolocation may lead to over-interpretation
In their 2015 Current Biology paper, Streby et al. [1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to “>1,500 km roundtrip” to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al. [1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al. [1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators’ inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary
Fermi-liquid instabilities at magnetic quantum phase transitions
This review discusses instabilities of the Fermi-liquid state of conduction
electrons in metals with particular emphasis on magnetic quantum critical
points. Both the existing theoretical concepts and experimental data on
selected materials are presented; with the aim of assessing the validity of
presently available theory. After briefly recalling the fundamentals of
Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models
and their lattice versions is described. Next, the scaling concepts applicable
to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of
quantum phase transitions is described in detail. The breakdown of the latter
is analyzed in several examples. In the final part experimental data on
heavy-fermion materials and transition-metal alloys are reviewed and confronted
with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion
extended, refs added; (v3) shortened; final version as publishe
Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations
- …