45 research outputs found

    Functional Role of the Polymorphic 647 T/C Variant of ENT1 (SLC29A1) and Its Association with Alcohol Withdrawal Seizures

    Get PDF
    Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans

    P2 receptors are involved in the mediation of motivation-related behavior

    Get PDF
    The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli

    Dichotomous Key to Conifer Foliage in the Pacific Northwest

    No full text
    Northwest Science, Vol. 59. No. 3, 198

    RARE PLANTS IN COASTAL HEATHLANDS: OBSERVATIONS ON COREMA CONRADII (EMPETRACEAE) AND HELIANTHEMUM DUMOSUM (CISTACEAE)

    No full text
    Volume: 92Start Page: 22End Page: 2

    On Setting Goals

    No full text

    Microsites Matter: Improving the Success of Rare Species Reintroductions.

    No full text
    Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae). This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable microsites to focus rare species plantings, survival and efficiency may be significantly enhanced

    Native versus exotic community patterns across three scales: roles of competition, environment and incomplete invasion

    No full text
    Three fundamental, interrelated questions in invasion ecology are: (1) to what extent do exotic species outcompete natives; (2) are native and exotic communities functionally similar or different; and (3) are differences in biogeographic patterns in native and exotic communities due to incomplete invasions among exotics? These questions are analogous to general questions in community ecology regarding the relative roles of competition, environmental response and dispersal limitation in community assembly. We addressed each of these questions for plant communities in discrete meadow patches, using analyses at three scales ranging from the landscape to microsites. A weak positive relationship between native and exotic species richness in microsites, and a predominance of positive correlations in abundance among native and exotic species pairs suggest that competition has been less important than other factors in determining native versus exotic abundance and community composition. In contrast, models of species richness and community compositional change across scales suggest native versus exotic community patterns are largely determined by a mix of scale-dependent concordant (shared positive or negative) and discordant relationships with environmental variables. In addition, detailed analyses of species-area and species-abundance relationships suggest ongoing expansion of exotic species populations, indicating that the assembly of the exotic community is in its early stages. Thus, while competition does not appear to strongly affect native versus exotic abundances and compositions at present, it may intensify in the future. Our results indicate that synoptic patterns in native versus exotic richness that have been previously attributed to a single cause may in fact be due to a complex mix of concordant and discordant responses to environmental factors across scales. They also suggest that conservation efforts aimed at promoting natives and reducing exotics should focus on the factors and scales for which such a response (i.e., promotion of high native and low exotic richness) can be expected

    The influence of prairie and topography on the probability of golden paintbrush survival after 5 years at four prairies with topographic heterogeneity (GH = Glacial Heritage, MM = Mima Mounds, WH = Wolf Haven, WR = West Rocky).

    No full text
    <p>Error bars represent 95% confidence intervals. Different letters represent significantly different probabilities of survival (α ≤ 0.05).</p

    Indicator Values of Golden Paintbrush by Plant Functional Group.

    No full text
    <p>Indicator Values of Golden Paintbrush by Plant Functional Group.</p
    corecore