13 research outputs found

    Analysis of 13,312 benthic invertebrate samples from German streams reveals minor deviations in ecological status class between abundance and presence/absence data.

    No full text
    Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules "organic pollution" (i.e., the saprobic index) and "general degradation" (a multimetric index) as well as their underlying metrics. In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from 'good' to 'moderate' (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach

    Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    Abstract Background Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Methods Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Results Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water–level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. Conclusions These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes

    Additional file 5: Figure S5. of Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    CCA triplot relating mosquito community variation via single species responses to environmental parameters based on significant CCA axes 3 and 4. Canonical correspondence analysis identified CORINE land cover types, precipitation, sunshine duration and average maximum Danube water levels as factors (depicted in black) affecting abundance patterns of most abundant mosquito species (depicted in red, abbreviated as in Table 1). Sites are depicted as circles (Burgenland province), triangles (Lower Austria province) and diamonds (Vienna province), differentiated between 2014 (green fill) and 2015 (yellow fill); centroids of sites classified into Burgenland (‘B’), Lower Austria (‘LA’) or Vienna (‘V’) province are depicted in blue. (TIF 477 kb

    Additional file 3: Figure S3. of Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    CCA triplot relating mosquito community variation via single species responses to environmental parameters based on significant CCA axes 2 and 3. Canonical correspondence analysis identified CORINE land cover types, precipitation, sunshine duration and average maximum Danube water levels as factors (depicted in black) affecting abundance patterns of most abundant mosquito species (depicted in red, abbreviated as in Table 1). Sites are depicted as circles (Burgenland province), triangles (Lower Austria province) and diamonds (Vienna province), differentiated between 2014 (green fill) and 2015 (yellow fill); centroids of sites classified into Burgenland (‘B’), Lower Austria (‘LA’) or Vienna (‘V’) province are depicted in blue. (TIF 505 kb

    Additional file 2: Figure S2. of Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    CCA triplot relating mosquito community variation via single species responses to environmental parameters based on significant CCA axes 1 and 4. Canonical correspondence analysis identified CORINE land cover types, precipitation, sunshine duration and average maximum Danube water levels as factors (depicted in black) affecting abundance patterns of most abundant mosquito species (depicted in red, abbreviated as in Table 1). Sites are depicted as circles (Burgenland province), triangles (Lower Austria province) and diamonds (Vienna province), differentiated between 2014 (green fill) and 2015 (yellow fill); centroids of sites classified into Burgenland (‘B’), Lower Austria (‘LA’) or Vienna (‘V’) province are depicted in blue. (TIF 471 kb

    Additional file 1: Figure S1. of Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    CCA triplot relating mosquito community variation via single species responses to environmental parameters based on significant CCA axes 1 and 3. Canonical correspondence analysis identified CORINE land cover types, precipitation, sunshine duration and average maximum Danube water levels as factors (depicted in black) affecting abundance patterns of most abundant mosquito species (depicted in red, abbreviated as in Table 1). Sites are depicted as circles (Burgenland province), triangles (Lower Austria province) and diamonds (Vienna province), differentiated between 2014 (green fill) and 2015 (yellow fill); centroids of sites classified into Burgenland (‘B’), Lower Austria (‘LA’) or Vienna (‘V’) province are depicted in blue. (TIF 464 kb

    Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria

    No full text
    Background: Culex pipiens complex taxa differ in behaviour, ecophysiology and epidemiologic importance. Despite their epidemiologic significance, information on genetic diversity, occurrence and seasonal and spatial distribution patterns of the Cx. pipiens complex is still insufficient. Assessment of seasonal and spatial distribution patterns of Culex pipiens forms and their congener Cx. torrentium is crucial for the understanding of their vector–pathogen dynamics. Methods: Female mosquitoes were trapped from April–October 2014 twice a month for a 24-h time period with BG-sentinel traps at 24 sampling sites in eastern Austria, using carbon dioxide as attractant. Ecological forms of Cx. pipiens s.l. and their hybrids were differentiated using the CQ11 locus, and Cx. pipiens forms and their congener Cx. torrentium using the ACE-2 gene. Differential exploitation of ecological niches by Cx. pipiens forms and Cx. torrentium was analysed using likelihood ratio tests. Possible effects of environmental parameters on these taxa were tested using PERMANOVA based on distance matrices and, if significant, were modelled in nMDS ordination space to estimate non-linear relationships. Results: For this study, 1476 Culex spp. were sampled. Culex pipiens f. pipiens representing 87.33 % of the total catch was most abundant, followed by hybrids of both forms (5.62 %), Cx. torrentium (3.79 %) and Cx. pipiens f. molestus (3.25 %). Differences in proportional abundances were found between land cover classes. Ecological parameters affecting seasonal and spatial distribution of these taxa in eastern Austria are precipitation duration, air temperature, sunlight and the interaction term of precipitation amount and the Danube water level, which can be interpreted as a proxy for breeding habitat availability. Conclusions: The Cx. pipiens complex of eastern Austria comprises both ecologically different forms, the mainly ornithophilic form pipiens and the mainly mammalophilic and anthropophilic form molestus. Heterogeneous agricultural areas as areas of coexistence may serve as hybridization zones, resulting in potential bridge vectors between birds and humans. Occurrence, seasonal and spatial distribution patterns of the Cx. pipiens complex and Cx. torrentium and the presence of hybrids between both forms were quantified for the first time in Austria. These findings will improve the knowledge of their vector–pathogen dynamics in this country

    Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)

    No full text
    Background: Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Methods: Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Results: Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water–level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. Conclusions: These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.© The Author(s). 201
    corecore