27 research outputs found

    Phase separation and pair condensation in a spin-imbalanced 2D Fermi gas

    Full text link
    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced condensate surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions

    Microscopy of a scalable superatom

    Get PDF
    Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions which lead to extreme nonlinearities in laser coupled atomic ensembles. As a result, multiple excitation of a Micrometer sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called "superatom", is a valuable resource for quantum information, providing a collective Qubit. Here we report on the preparation of two orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub shot noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in-situ detection of the Rydberg excitations and observe the characteristic square root scaling of the optical coupling with the number of atoms. Furthermore, we verify the presence of entanglement in the prepared states and demonstrate the coherent manipulation of the superatom. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.Comment: 7 pages, 5 figure

    Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain

    Get PDF
    Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.Comment: 6 pages, 4 figure

    Coherent light scattering from a two-dimensional Mott insulator

    Get PDF
    We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.Comment: 4 pages, 4 figure

    A Framework for Iterative Signing of Graph Data on the Web

    Get PDF
    Abstract. Existing algorithms for signing graph data typically do not cover the whole signing process. In addition, they lack distinctive features such as signing graph data at different levels of granularity, iterative signing of graph data, and signing multiple graphs. In this paper, we introduce a novel framework for signing arbitrary graph data provided, e g., as RDF(S), Named Graphs, or OWL. We conduct an extensive theoretical and empirical analysis of the runtime and space complexity of different framework configurations. The experiments are performed on synthetic and real-world graph data of different size and different number of blank nodes. We investigate security issues, present a trust model, and discuss practical considerations for using our signing framework

    Single-site- and single-atom-resolved measurement of correlation functions

    Get PDF
    Correlation functions play an important role for the theoretical and experimental characterization of many-body systems. In solid-state systems, they are usually determined through scattering experiments whereas in cold-gases systems, time-of-flight and in-situ absorption imaging are the standard observation techniques. However, none of these methods allow the in-situ detection of spatially resolved correlation functions at the single-particle level. Here we give a more detailed account of recent advances in the detection of correlation functions using in-situ fluorescence imaging of ultracold bosonic atoms in an optical lattice. This method yields single-site and single-atom-resolved images of the lattice gas in a single experimental run, thus gaining direct access to fluctuations in the many-body system. As a consequence, the detection of correlation functions between an arbitrary set of lattice sites is possible. This enables not only the detection of two-site correlation functions but also the evaluation of non-local correlations, which originate from an extended region of the system and are used for the characterization of quantum phases that do not possess (quasi-)long-range order in the traditional sense.Comment: extended version of M. Endres et al., Science 334, 200-203 (2011) [arXiv:1108.3317

    Light-cone-like spreading of correlations in a quantum many-body system

    Get PDF
    How fast can correlations spread in a quantum many-body system? Based on the seminal work by Lieb and Robinson, it has recently been shown that several interacting many-body systems exhibit an effective light cone that bounds the propagation speed of correlations. The existence of such a "speed of light" has profound implications for condensed matter physics and quantum information, but has never been observed experimentally. Here we report on the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open important perspectives for understanding relaxation of closed quantum systems far from equilibrium as well as for engineering efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure
    corecore