6,128 research outputs found

    Kernel-based high-dimensional histogram estimation for visual tracking

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 15th IEEE International Conference on Image Processing, October 12–15, 2008, San Diego, California, U.S.A.DOI: 10.1109/ICIP.2008.4711862We propose an approach for non-rigid tracking that represents objects by their set of distribution parameters. Compared to joint histogram representations, a set of parameters such as mixed moments provides a significantly reduced size representation. The discriminating power is comparable to that of the corresponding full high dimensional histogram yet at far less spatial and computational complexity. The proposed method is robust in the presence of noise and illumination changes, and provides a natural extension to the use of mixture models. Experiments demonstrate that the proposed method outperforms both full color mean-shift and global covariance searches

    A New Waveform Consistency Test for Gravitational Wave Inspiral Searches

    Get PDF
    Searches for binary inspiral signals in data collected by interferometric gravitational wave detectors utilize matched filtering techniques. Although matched filtering is optimal in the case of stationary Gaussian noise, data from real detectors often contains "glitches" and episodes of excess noise which cause filter outputs to ring strongly. We review the standard \chi^2 statistic which is used to test whether the filter output has appropriate contributions from several different frequency bands. We then propose a new type of waveform consistency test which is based on the time history of the filter output. We apply one such test to the data from the first LIGO science run and show that it cleanly distinguishes between true inspiral waveforms and large-amplitude false signals which managed to pass the standard \chi^2 test.Comment: 10 pages, 6 figures, submitted to Classical and Quantum Gravity for the proceedings of the Eighth Gravitational Wave Data Analysis Workshop (GWDAW-8

    Low-mass Tertiary Companions to Spectroscopic Binaries. I. Common Proper Motion Survey for Wide Companions Using 2MASS

    Get PDF
    We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the Two Micron All Sky Survey Point Source Catalog and follow-up observations with the KPNO and CTIO 4 m telescopes. Note that this sample is not volume complete but volume limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU (~10ˮ → ~ 10'). From 77 sources followed-up to date, we recover 11 previously known tertiaries, 3 previously known candidate tertiaries, of which 2 are spectroscopically confirmed and 1 rejected, and 3 new candidates, of which 2 are confirmed and 1 rejected. This yields an estimated wide tertiary fraction of 19.5^(+5.2)_(–3.7)%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%

    Unified study of glass and jamming rheology in soft particle systems

    Full text link
    We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The interplay between viscous dissipation and thermal motion results in multiple rheological regimes encompassing Newtonian, shear-thinning and yield stress regimes near the `colloidal' glass transition when thermal fluctuations are important, crossing over to qualitatively similar regimes near the `jamming' transition when dissipation dominates. In the crossover regime, glass and jamming sectors coexist and give complex flow curves. Although glass and jamming limits are characterized by similar macroscopic flow curves, we show that they occur over distinct time and stress scales and correspond to distinct microscopic dynamics. We propose a simple rheological model describing the glass to jamming crossover in the flow curves, and discuss the experimental implications of our results.Comment: 5 pages, 3 figs; v2 accepted to publication to Phys. Rev. Let

    Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams

    Full text link
    We present an implementation of quantum logic gates via internal state dependent displacements of ions in a linear Paul trap caused by optical dipole forces. Based on a general quantum analysis of the system dynamics we consider specific implementations with alkaline earth ions. For experimentally realistic parameters gate infidelities as low as 10410^{-4} can be obtained.Comment: 10 pages, 4 figure

    Human Ecology Economics (HEE) and Strategic Management

    Get PDF
    Human Ecology Economics (HEE) draws on evolutionary and complex systems processes by incorporating interdisciplinary material from the humanities and sciences. Lessons for strategic managers follow from this HEE perspective with examples from the banking industry. HEE can nurture a broad environmental perspective among strategic managers and an ontological understanding of their organization within its dynamic ecology. Reconciliation is attempted between the chaotic dualities inherent in strategic management (SM)

    A New Brown Dwarf Desert? A Scarcity of Wide Ultracool Binaries

    Get PDF
    We present the results of a deep-imaging search for wide companions to low-mass stars and brown dwarfs using NSFCam on IRTF. We searched a sample of 132 M7-L8 dwarfs to magnitude limits of J20.5J \sim 20.5 and K18.5K \sim 18.5, corresponding to secondary-primary mass ratios of 0.5\sim 0.5. No companions were found with separations between 2{\arcsec} to 31{\arcsec} (\sim40 AU to \sim1000 AU). This null result implies a wide companion frequency below 2.3% at the 95% confidence level within the sensitivity limits of the survey. Preliminary modeling efforts indicate that we could have detected 85% of companions more massive than 0.05M0.05 M_{\odot} and 50% above 0.03M0.03 M_{\odot}.Comment: 27 pages, 8 figures, 3 tables: accepted to the Astronomical Journa

    Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network forming liquid

    Get PDF
    We study the breakdown of the Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) relations for translational and rotational motion in a prototypical model of a network-forming liquid, the ST2 model of water. We find that the emergence of ``fractional'' SE and DSE relations at low temperature is ubiquitous in this system, with exponents that vary little over a range of distinct physical regimes. We also show that the same fractional SE relation is obeyed by both mobile and immobile dynamical heterogeneities of the liquid

    Star Formation via the Little Guy: A Bayesian Study of Ultracool Dwarf Imaging Surveys for Companions

    Full text link
    I have undertaken a comprehensive statistical investigation of the ultracool dwarf companion distribution (spectral type M6 and later). Utilizing a Bayesian algorithm, I tested models of the companion distribution against data from an extensive set of space and ground-based imaging observations of nearby ultracool dwarfs. My main conclusions are fivefold: 1) Confirm that the concentration of high mass ratio ultracool binary systems is a fundamental feature of the companion distribution, not an observational or selection bias; 2) Determine that the wide (>~20 AU) binary frequency can be no more the 1-2%; 3) Show that the decreasing binary frequency with later spectral types is a real trend; 4) Demonstrate that a large population of currently undetected low mass ratio systems are not consistent with the current data; 5) Find that the population of spectroscopic binaries must be be at least 30% that of currently known ultracool binaries. The best fit value for the overall M6 and later binary frequency is ~20%-22%, of which only ~6% consists of currently undetected companions with separations less than 1 AU. If this is correct, then the upper limit of the ultracool binary population discovered to date is ~75%. I find that the numerical simulation results of the ejection formation method are inconsistent with the outcome of this analysis. However, dynamics do seem to play an important role as simulations of small-N clusters and triple system decays produce results similar to those of this work. The observational efforts required to improve these constraints are shown to be primarily large spectroscopic binary surveys and improved high-resolution imaging techniques.Comment: 42 pages, 17 figures, to be published in October 2007 Ap

    Representations of Time Coordinates in FITS

    Full text link
    In a series of three previous papers, formulation and specifics of the representation of World Coordinate Transformations in FITS data have been presented. This fourth paper deals with encoding time. Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Employing the well--established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.Comment: FITS WCS Paper IV: Time. 27 pages, 11 table
    corecore