19 research outputs found

    Recombinant Erythropoietin in Humans Has a Prolonged Effect on Circulating Erythropoietin Isoform Distribution

    No full text
    <div><p>The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2)% (p<0.00001) and 45.2 (7.3)% (p<0.00001). Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8)% (p<0.00001) and 46.1 (10.4)% (p<0.00001). In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4)% (p = 0.029); low-dose Epoetin beta: 73.1 (17.8)% (p = 0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.</p></div

    Total plasma EPO concentration (mIU/ml).

    No full text
    <p>N = 15. Values are means (SD). Data was log<sub>10</sub> transformed before analysis.</p><p><b>*</b>p = 0.004;</p><p>**p<0.00001 compared with placebo.</p><p>Total plasma EPO concentration (mIU/ml).</p

    The percent migrated isoform at 15 mM GlcNAc.

    No full text
    <p>PMI after 4, 11 and 25 days of either high-dose rhEPO, low-dose rhEPO, or placebo. N = 15. Values are means with 95 % confidence intervals. <b>*</b>p<0.05; ** p<0.00001 compared with placebo.</p

    Standard curve.

    No full text
    <p>Concentrations of rhEPO (Epoietin beta) were 0, 10, 30, 100, 300 and 600 ng/l. All solutions were tested at 300 mM of GlcNAc. Values are means ± SD. N = 6.</p

    Optimization curve.

    No full text
    <p>For optimization of W elution buffer <i>low</i>, three samples were used: 1) UC, umbilical cord sample; 2) Plasma sample form a normal subject; and 3) rhEPO, epoetin beta (300 ng/l). All samples from the three specimen were tested with GlcNAc concentrations of 5 mM, 10 mM, 15 mM, 20 mM, and 300 mM. Values are means (SD). N = 6 for UC, N = 5 for plasma and N = 5 for rhEPO.</p

    Haematological parameters after 4, 11 and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO.

    No full text
    <p>N = 16. Values are means (SD).</p>§<p>Data was log<sub>10</sub> transformed before analysis.</p><p><b>*</b>p<0.05;</p><p>**p<0.01 compared with placebo.</p><p>Haematological parameters after 4, 11 and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO.</p

    Consort 2010 checklist.

    No full text
    ObjectiveHypokalemia is associated with increased risk of arrhythmias and it is recommended to monitor plasma potassium (p-K) regularly in at-risk patients with cardiovascular diseases. It is poorly understood if administration of potassium supplements and mineralocorticoid receptor antagonists (MRA) aimed at increasing p-K also increases intracellular potassium.MethodsAdults aged≥18 years with an implantable cardioverter defibrillator (ICD) were randomized (1:1) to a control group or to an intervention that included guidance on potassium rich diets, potassium supplements, and MRA to increase p-K to target levels of 4.5–5.0 mmol/l for six months. Total-body-potassium (TBK) was measured by a Whole-Body-Counter along with p-K at baseline, after six weeks, and after six months.ResultsFourteen patients (mean age: 59 years (standard deviation 14), 79% men) were included. Mean p-K was 3.8 mmol/l (0.2), and mean TBK was 1.50 g/kg (0.20) at baseline. After six-weeks, p-K had increased by 0.47 mmol/l (95%CI:0.14;0.81), p = 0.008 in the intervention group compared to controls, whereas no significant difference was found in TBK (44 mg/kg (-20;108), p = 0.17). After six-months, no significant difference was found in p-K as compared to baseline (0.16 mmol/l (-0.18;0.51), p = 0.36), but a significant increase in TBK of 82 mg/kg (16;148), p = 0.017 was found in the intervention group compared to controls.ConclusionsIncreased potassium intake and MRAs increased TBK gradually and a significant increase was seen after six months. The differentially regulated p-K and TBK challenges current knowledge on potassium homeostasis and the time required before the full potential of p-K increasing treatment can be anticipated.Trial registrationwww.clinicaltrials.gov (NCT03833089).</div

    POTCAST study protocol.

    No full text
    ObjectiveHypokalemia is associated with increased risk of arrhythmias and it is recommended to monitor plasma potassium (p-K) regularly in at-risk patients with cardiovascular diseases. It is poorly understood if administration of potassium supplements and mineralocorticoid receptor antagonists (MRA) aimed at increasing p-K also increases intracellular potassium.MethodsAdults aged≥18 years with an implantable cardioverter defibrillator (ICD) were randomized (1:1) to a control group or to an intervention that included guidance on potassium rich diets, potassium supplements, and MRA to increase p-K to target levels of 4.5–5.0 mmol/l for six months. Total-body-potassium (TBK) was measured by a Whole-Body-Counter along with p-K at baseline, after six weeks, and after six months.ResultsFourteen patients (mean age: 59 years (standard deviation 14), 79% men) were included. Mean p-K was 3.8 mmol/l (0.2), and mean TBK was 1.50 g/kg (0.20) at baseline. After six-weeks, p-K had increased by 0.47 mmol/l (95%CI:0.14;0.81), p = 0.008 in the intervention group compared to controls, whereas no significant difference was found in TBK (44 mg/kg (-20;108), p = 0.17). After six-months, no significant difference was found in p-K as compared to baseline (0.16 mmol/l (-0.18;0.51), p = 0.36), but a significant increase in TBK of 82 mg/kg (16;148), p = 0.017 was found in the intervention group compared to controls.ConclusionsIncreased potassium intake and MRAs increased TBK gradually and a significant increase was seen after six months. The differentially regulated p-K and TBK challenges current knowledge on potassium homeostasis and the time required before the full potential of p-K increasing treatment can be anticipated.Trial registrationwww.clinicaltrials.gov (NCT03833089).</div

    Supplementary appendix.

    No full text
    ObjectiveHypokalemia is associated with increased risk of arrhythmias and it is recommended to monitor plasma potassium (p-K) regularly in at-risk patients with cardiovascular diseases. It is poorly understood if administration of potassium supplements and mineralocorticoid receptor antagonists (MRA) aimed at increasing p-K also increases intracellular potassium.MethodsAdults aged≥18 years with an implantable cardioverter defibrillator (ICD) were randomized (1:1) to a control group or to an intervention that included guidance on potassium rich diets, potassium supplements, and MRA to increase p-K to target levels of 4.5–5.0 mmol/l for six months. Total-body-potassium (TBK) was measured by a Whole-Body-Counter along with p-K at baseline, after six weeks, and after six months.ResultsFourteen patients (mean age: 59 years (standard deviation 14), 79% men) were included. Mean p-K was 3.8 mmol/l (0.2), and mean TBK was 1.50 g/kg (0.20) at baseline. After six-weeks, p-K had increased by 0.47 mmol/l (95%CI:0.14;0.81), p = 0.008 in the intervention group compared to controls, whereas no significant difference was found in TBK (44 mg/kg (-20;108), p = 0.17). After six-months, no significant difference was found in p-K as compared to baseline (0.16 mmol/l (-0.18;0.51), p = 0.36), but a significant increase in TBK of 82 mg/kg (16;148), p = 0.017 was found in the intervention group compared to controls.ConclusionsIncreased potassium intake and MRAs increased TBK gradually and a significant increase was seen after six months. The differentially regulated p-K and TBK challenges current knowledge on potassium homeostasis and the time required before the full potential of p-K increasing treatment can be anticipated.Trial registrationwww.clinicaltrials.gov (NCT03833089).</div
    corecore