1 research outputs found
Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors
In recent years, the first generation
of β-secretase (BACE1)
inhibitors advanced into clinical development for the treatment of
Alzheimer’s disease (AD). However, the alignment of drug-like
properties and selectivity remains a major challenge. Herein, we describe
the discovery of a novel class of potent, low clearance, CNS penetrant
BACE1 inhibitors represented by thioamidine <b>5</b>. Further
profiling suggested that a high fraction of the metabolism (>95%)
was due to CYP2D6, increasing the potential risk for victim-based
drug–drug interactions (DDI) and variable exposure in the clinic
due to the polymorphic nature of this enzyme. To guide future design,
we solved crystal structures of CYP2D6 complexes with substrate <b>5</b> and its corresponding metabolic product pyrazole <b>6</b>, which provided insight into the binding mode and movements between
substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal
structures, we designed and synthesized analogues with reduced risk
for DDI, central efficacy, and improved hERG therapeutic margins