1,255 research outputs found

    Number-related Brain Potentials Are Differentially Affected by Mapping Novel Symbols on Small versus Large Quantities in a Number Learning Task

    Get PDF
    The nature of the mapping process that imbues number symbols with their numerical meaning-known as the "symbolgrounding process"-remains poorly understood and the topic of much debate. The aim of this study was to enhance insight into how the nonsymbolic-symbolic number mapping process and its neurocognitive correlates might differ between small (1-4; subitizing range) and larger (6-9) numerical ranges. Hereto, 22 young adults performed a learning task in which novel symbols acquired numerical meaning by mapping them onto nonsymbolic magnitudes presented as dot arrays (range 1-9). Learning-dependent changes in accuracy and RT provided evidence for successful novel symbol quantity mapping in the subitizing (1-4) range only. Corroborating these behavioral results, the number processing related P2p component was only modulated by the learning/mapping of symbols representing small numbers 1-4. The symbolic N1 amplitude increased with learning independent of symbolic numerical range but dependent on the set size of the preceding dot array; it only occurred when mapping on one to four item dot arrays that allow for quick retrieval of a numeric value, on the basis of which, with learning, one could predict the upcoming symbol causing perceptual expectancy violation when observing a different symbol. These combined results suggest that exact nonsymbolic-symbolic mapping is only successful for small quantities 1-4 from which one can readily extract cardinality. Furthermore, we suggest that the P2p reflects the processing stage of first access to or retrieval of numeric codes and might in future studies be used as a neural correlate of nonsymbolic-symbolic mapping/symbol learning

    A role for age-related changes in TGFβ signaling in aberrant chondrocyte differentiation and osteoarthritis

    Get PDF
    Transforming growth factor beta (TGFβ) is a growth factor with many faces. In our osteoarthritis (OA) research we have found that TGFβ can be protective as well as deleterious for articular cartilage. We postulate that the dual effects of TGFβ on chondrocytes can be explained by the fact that TGFβ can signal via different receptors and related Smad signaling routes. On chondrocytes, TGFβ not only signals via the canonical type I receptor ALK5 but also via the ALK1 receptor. Notably, signaling via ALK5 (Smad2/3 route) results in markedly different chondrocyte responses than ALK1 signaling (Smad1/5/8), and we postulate that the balance between ALK5 and ALK1 expression on chondrocytes will determine the overall effect of TGFβ on these cells. Importantly, signaling via ALK1, but not ALK5, stimulates MMP-13 expression by chondrocytes. In cartilage of ageing mice and in experimental OA models we have found that the ALK1/ALK5 ratio is significantly increased, favoring TGFβ signaling via the Smad1/5/8 route, changes in chondrocyte differentiation and MMP-13 expression. Moreover, human OA cartilage showed a significant correlation between ALK1 and MMP-13 expression. In this paper we summarize concepts in OA, its link with ageing and disturbed growth factor responses, and a potential role of TGFβ signaling in OA development

    Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling

    Get PDF
    Bone morphogenetic protein-2 (BMP-2) has been proposed as a tool for cartilage repair and as a stimulant of chondrogenesis. In healthy cartilage, BMP-2 is hardly present, whereas it is highly expressed during osteoarthritis. To assess its function in cartilage, BMP-2 was overexpressed in healthy murine knee joints and the effects on proteoglycan (PG) synthesis and degradation were evaluated. Moreover, the contribution of BMP in repairing damage induced by interleukin-1 (IL-1) was investigated. Ad-BMP-2 was injected intra-articularly into murine knee joints, which were isolated 3, 7, and 21 days after injection for histology, immunohistochemistry, and autoradiography. In addition, patellar and tibial cartilage was isolated for RNA isolation or measurement of PG synthesis by means of 35SO4 2- incorporation. To investigate the role for BMP-2 in cartilage repair, cartilage damage was induced by intra-articular injection of IL-1. After 2 days, Ad-BMP-2, Ad-BMP-2 + Ad-gremlin, Ad-gremlin, or a control virus was injected. Whole knee joints were isolated for histology at day 4 or patellae were isolated to measure 35SO42- incorporation. BMP-2 stimulated PG synthesis in patellar cartilage on all days and in tibial cartilage on day 21. Aggrecan mRNA expression had increased on all days in patellar cartilage, with the highest increase on day 7. Collagen type II expression showed a similar expression pattern. In tibial cartilage, collagen type II and aggrecan mRNA expression had increased on days 7 and 21. BMP-2 overexpression also induced increased aggrecan degradation in cartilage. VDIPEN staining (indicating matrix metalloproteinase activity) was elevated on day 3 in tibial cartilage and on days 3 and 7 in patellar cartilage, but no longer was by day 21. Increased NITEGE staining (indicating aggrecanase activity) was found on days 7 and 21. In IL-1-damaged patellar cartilage, BMP-2 boosted PG synthesis. Blocking of BMP activity resulted in a decreased PG synthesis compared with IL-1 alone. This decreased PG synthesis was associated with PG depletion in the cartilage. These data show that BMP-2 boosts matrix turnover in intact and IL-damaged cartilage. Moreover, BMP contributes to the intrinsic repair capacity of damaged cartilage. Increased matrix turnover might be functional in replacing matrix molecules in the repair of a damaged cartilage matrix

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins
    • …
    corecore