654 research outputs found

    Acute referral of patients from general practitioners: should the hospital doctor or a nurse receive the call?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surprisingly little is known about the most efficient organization of admissions to an emergency hospital. It is important to know, who should be in front when the GP requests an acute admission. The aim of the study was to analyse how experienced ED nurses perform when assessing requests for admissions, compared with hospital physicians.</p> <p>Methods</p> <p>Before- and after ED nurse assessment study, in which two cohorts of patients were followed from the time of request for admission until one month later. The first cohort of patients was included by the physicians on duty in October 2008. The admitting physicians were employed in the one of the specialized departments and only received request for admission within their speciality. The second cohort of patients was included by the ED in May 2009. They received all request from the GPs for admission, independent of the speciality in question.</p> <p>Results</p> <p>A total of 944 requests for admission were recorded. There was a non-significant trend towards the nurses admitting a smaller fraction of patients than the physicians (68 versus 74%). While the nurses almost never rejected an admission, the physicians did this in 7% of the requests. The nurses redirected 8% of the patients to another hospital, significantly more than the physicians with only 1%. (p < 0.0001). The nurses referred significantly more patients to the correct hospital than the doctors (78% vs. 70% p: 0.03). There were no differences in the frequency of unnecessary admissions between the groups. The self-reported use of time for assessment was twice as long for the physicians as for the nurses. (p < 0.0001).</p> <p>Conclusions</p> <p>We found no differences in the frequency of admitted patients or unnecessary admissions, but the nurses redirected significantly more patients to the right hospital according to the catchment area, and used only half the time for the assessment. We find, that nurses, trained for the assignment, are able to handle referrals for emergency admissions, but also advise the subject to be explored in further studies including other assessment models and GP satisfaction.</p

    Plasma lipid species at type 1 diabetes onset predict residual beta-cell function after 6 months

    Get PDF
    INTRODUCTION: The identification of metabolomic dysregulation appears promising for the prediction of type 1 diabetes and may also reveal metabolic pathways leading to beta-cell destruction. Recent studies indicate that regulation of multiple phospholipids precede the presence of autoantigens in the development of type 1 diabetes. OBJECTIVES: We hypothesize that lipid biomarkers in plasma from children with recent onset type 1 diabetes will reflect their remaining beta-cell function and predict future changes in beta-cell function. METHODS: We performed targeted lipidomic profiling by electrospray ionization tandem mass spectrometry to acquire comparative measures of 354 lipid species covering 25 lipid classes and subclasses in plasma samples from 123 patients < 17 years of age followed prospectively at 1, 3, 6 and 12 months after diagnosis. Lipidomic profiles were analysed using liner regression to investigate the relationship between plasma lipids and meal stimulated C-peptide levels at each time point. P-values were corrected for multiple comparisons by the method of Benjamini and Hochberg. RESULTS: Linear regression analysis showed that the relative levels of cholesteryl ester, diacylglycerol and triacylglycerol at 1 month were associated to the change in c-peptide levels from 1 to 6 months (corrected p-values of 4.06E-03, 1.72E-02 and 1.72E02, respectively). Medium chain saturated and monounsaturated fatty acids were the major constituents of the di- and triacylglycerol species suggesting a link with increased lipogenesis. CONCLUSION: These observations support the hypothesis of lipid disturbances as explanatory factors for residual beta-cell function in children with new onset type 1 diabetes

    Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection

    Get PDF
    MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host’s ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection

    Implementation of neck/shoulder exercises for pain relief among industrial workers: A randomized controlled trial

    Get PDF
    BACKGROUND: Although leisure-time physical activity is important for health, adherence to regular exercise is challenging for many adults. The workplace may provide an optimal setting to reach a large proportion of the adult population needing regular physical exercise. This study evaluates the effect of implementing strength training at the workplace on non-specific neck and shoulder pain among industrial workers. METHODS: Cluster-randomized controlled trial involving 537 adults from occupations with high prevalence of neck and shoulder pain (industrial production units). Participants were randomized to 20 weeks of high-intensity strength training for the neck and shoulders three times a week (n = 282) or a control group receiving advice to stay physically active (n = 255). The strength training program followed principles of progressive overload and periodization. The primary outcome was changes in self-reported neck and shoulder pain intensity (scale 0-9). RESULTS: 85% of the participants followed the strength training program on a weekly basis. In the training group compared with the control group, neck pain intensity decreased significantly (-0.6, 95% CI -1.0 to -0.1) and shoulder pain intensity tended to decrease (-0.2, 95% CI -0.5 to 0.1, P = 0.07). For pain-cases at baseline (pain intensity > = 3) the odds ratio - in the training group compared with the control group - for being a non-case at follow-up (pain intensity < 3) was 2.0 (95% CI 1.0 to 4.2) for the neck and 3.9 (95% CI 1.7 to 9.4) for the shoulders. CONCLUSION: High-intensity strength training relying on principles of progressive overload can be successfully implemented at industrial workplaces, and results in significant reductions of neck and shoulder pain. TRIAL REGISTRATION: NCT01071980

    Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    Get PDF
    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues

    Scattering Induced Quantum Interference of Multiple Quantum Optical States

    Get PDF
    Abstract. Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples

    First-principles calculations of the phonon dispersion curves of H on Pt(111)

    Full text link
    We have calculated the surface phonon dispersion curves for H on Pt(111), using first-principles, total energy calculations based on a mixed-basis set and norm-conserving pseudopotentials. Linear response theory and the harmonic approximation are invoked. For one monolayer of H in the preferred adsorption site (fcc hollow) vibrational modes polarized parallel and perpendicular to the surface are found, respectively, at 73.5 meV and 142.6 meV, at the &#915; point of the surface Brillouin zone. The degeneracy of the parallel mode is lifted at the zone boundaries, yielding energies of 69.6 meV and 86.3 meV at the M point and 79.4 meV and 80.8 meV at the K point. The dispersion curves for H adsorption at the hcp hollow site differ only slightly from the above. In either case, H adsorption has considerable impact on the substrate modes; in particular the surface mode in the gap in the bulk phonon spectrum (around M point) is pushed into the bulk band. For on-top H adsorption, modes polarized parallel and perpendicular to the surface have respective energies of 47.4 meV and 277.2 meV, at the &#915; point. The former disperses to 49.1 meV and 59.5 meV at the M point and to 56 meV and 56.7 meV at the K point. The H vibrational mode polarized perpendicular to the surface shows little dispersion, in all three cases considered. Insights are obtained from the hybridization of the H and Pt electronic states.Comment: 26 pages, 6 figure

    Therapeutic benefits of proning to improve pulmonary gas exchange in severe respiratory failure: Focus on fundamentals of physiology

    Get PDF
    NEW FINDINGS: What is the topic of this review? The use of proning for improving pulmonary gas exchange in critically ill patients. What advances does it highlight? Proning places the lung in its ‘natural’ posture, and thus optimises the ventilation‐perfusion distribution, which enables lung protective ventilation and the alleviation of potentially life‐threatening hypoxaemia in COVID‐19 and other types of critical illness with respiratory failure. ABSTRACT: The survival benefit of proning patients with acute respiratory distress syndrome (ARDS) is well established and has recently been found to improve pulmonary gas exchange in patients with COVID‐19‐associated ARDS (CARDS). This review outlines the physiological implications of transitioning from supine to prone on alveolar ventilation‐perfusion ([Formula: see text]) relationships during spontaneous breathing and during general anaesthesia in the healthy state, as well as during invasive mechanical ventilation in patients with ARDS and CARDS. Spontaneously breathing, awake healthy individuals maintain a small vertical (ventral‐to‐dorsal) [Formula: see text] ratio gradient in the supine position, which is largely neutralised in the prone position, mainly through redistribution of perfusion. In anaesthetised and mechanically ventilated healthy individuals, a vertical [Formula: see text] ratio gradient is present in both postures, but with better [Formula: see text] matching in the prone position. In ARDS and CARDS, the vertical [Formula: see text] ratio gradient in the supine position becomes larger, with intrapulmonary shunting in gravitationally dependent lung regions due to compression atelectasis of the dorsal lung. This is counteracted by proning, mainly through a more homogeneous distribution of ventilation combined with a largely unaffected high perfusion dorsally, and a consequent substantial improvement in arterial oxygenation. The data regarding proning as a therapy in patients with CARDS is still limited and whether the associated improvement in arterial oxygenation translates to a survival benefit remains unknown. Proning is nonetheless an attractive and lung protective manoeuvre with the potential benefit of improving life‐threatening hypoxaemia in patients with ARDS and CARDS
    corecore