291 research outputs found

    Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences

    Get PDF

    Modulation of Macrophage Efferocytosis in Inflammation

    Get PDF
    A critical function of macrophages within the inflammatory milieu is the removal of dying cells by a specialized phagocytic process called efferocytosis (“to carry to the grave”). Through specific receptor engagement and induction of downstream signaling, efferocytosing macrophages promote resolution of inflammation by (i) efficiently engulfing dying cells, thus avoiding cellular disruption and release of inflammatory contents, and (ii) producing anti-inflammatory mediators such as IL-10 and TGF-β that dampen pro-inflammatory responses. Evidence suggests that plasticity in macrophage programming, in response to changing environmental cues, modulates efferocytic capability. Essential to programming for enhanced efferocytosis is activation of the nuclear receptors PPARγ, PPARδ, LXR, and possibly RXRα. Additionally, a number of signals in the inflammatory milieu, including those from dying cells themselves, can influence efferocytic efficacy either by acting as immediate inhibitors/enhancers or by altering macrophage programming for longer-term effects. Importantly, sustained inflammatory programming of macrophages can lead to defective apoptotic cell clearance and is associated with development of autoimmunity and other chronic inflammatory disorders. This review summarizes the current knowledge of the multiple factors that modulate macrophage efferocytic ability and highlights emerging therapeutic targets with significant potential for limiting chronic inflammation

    Hemophagocytic Macrophages Harbor Salmonella enterica during Persistent Infection

    Get PDF
    Salmonella enterica subspecies can establish persistent, systemic infections in mammals, including human typhoid fever. Persistent S. enterica disease is characterized by an initial acute infection that develops into an asymptomatic chronic infection. During both the acute and persistent stages, the bacteria generally reside within professional phagocytes, usually macrophages. It is unclear how salmonellae can survive within macrophages, cells that evolved, in part, to destroy pathogens. Evidence is presented that during the establishment of persistent murine infection, macrophages that contain S. enterica serotype Typhimurium are hemophagocytic. Hemophagocytic macrophages are characterized by the ingestion of non-apoptotic cells of the hematopoietic lineage and are a clinical marker of typhoid fever as well as certain other infectious and genetic diseases. Cell culture assays were developed to evaluate bacterial survival in hemophagocytic macrophages. S. Typhimurium preferentially replicated in macrophages that pre-phagocytosed viable cells, but the bacteria were killed in macrophages that pre-phagocytosed beads or dead cells. These data suggest that during persistent infection hemophagocytic macrophages may provide S. Typhimurium with a survival niche

    Phosphatidylserine (PS) induces PS receptor–mediated macropinocytosis and promotes clearance of apoptotic cells

    Get PDF
    Efficient phagocytosis of apoptotic cells is important for normal tissue development, homeostasis, and the resolution of inflammation. Although many receptors have been implicated in the clearance of apoptotic cells, the roles of these receptors in the engulfment process have not been well defined. We developed a novel system to distinguish between receptors involved in tethering of apoptotic cells versus those inducing their uptake. Our results suggest that regardless of the receptors engaged on the phagocyte, ingestion does not occur in the absence of phosphatidylserine (PS). Further, recognition of PS was found to be dependent on the presence of the PS receptor (PSR). Both PS and anti-PSR antibodies stimulated membrane ruffling, vesicle formation, and “bystander” uptake of cells bound to the surface of the phagocyte. We propose that the phagocytosis of apoptotic cells requires two events: tethering followed by PS-stimulated, PSR-mediated macropinocytosis

    Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-γ in a nitric oxide-dependent manner

    Get PDF
    Immunodeficiency in chronic granulomatous disease (CGD) is well characterized. Less understood are exaggerated sterile inflammation and autoimmunity associated with CGD. Impaired recognition and clearance of apoptotic cells resulting in their disintegration may contribute to CGD inflammation. We hypothesized that priming of macrophages (Ms) with IFN-γ would enhance impaired engulfment of apoptotic cells in CGD. Diverse M populations from CGD (gp91(phox)(-/-)) and wild-type mice, as well as human Ms differentiated from monocytes and promyelocytic leukemia PLB-985 cells (with and without mutation of the gp91(phox)), demonstrated enhanced engulfment of apoptotic cells in response to IFN-γ priming. Priming with IFN-γ was also associated with increased uptake of Ig-opsonized targets, latex beads, and fluid phase markers, and it was accompanied by activation of the Rho GTPase Rac. Enhanced Rac activation and phagocytosis following IFN-γ priming were dependent on NO production via inducible NO synthase and activation of protein kinase G. Notably, endogenous production of TNF-α in response to IFN-γ priming was critically required for inducible NO synthase upregulation, NO production, Rac activation, and enhanced phagocytosis. Treatment of CGD mice with IFN-γ also enhanced uptake of apoptotic cells by M in vivo via the signaling pathway. Importantly, during acute sterile peritonitis, IFN-γ treatment reduced excess accumulation of apoptotic neutrophils and enhanced phagocytosis by CGD Ms. These data support the hypothesis that in addition to correcting immunodeficiency in CGD, IFN-γ priming of Ms restores clearance of apoptotic cells and may thereby contribute to resolution of exaggerated CGD inflammation

    Pathological Features of Breast Cancer seen in Northwestern Tanzania: A Nine Years Retrospective Study.

    Get PDF
    Breast cancer is more common in Western Countries compared to African populations. However in African population, it appears that the disease tends to be more aggressive and occurring at a relatively young age at the time of presentation. The aim of this study was to describe the trend of Breast Cancer in Northwestern Tanzania. This was a retrospective study which involved all cases of breast cancer diagnosed histologically at Bugando Medical Center from 2002 to 2010. Histological results and slides were retrieved from the records in the Pathology department, clinical information and demographic data for patients were retrieved from surgical wards and department of medical records. Histology slides were re-evaluated for the histological type, grade (By modified Bloom-Richardson score), and presence of necrosis and skin involvement. Data was entered and analyzed by SPSS computer software version 15. There were 328 patients histologically confirmed to have breast cancer, the mean age at diagnosis was 48.7 years (+/- 13.1). About half of the patients (52.4%) were below 46 years of age, and this group of patients had significantly higher tendency for lymph node metastasis (p = 0.012). The tumor size ranged from 1 cm to 18 cm in diameter with average (mean) of 5.5 cm (+/- 2.5), and median size of 6 cm. Size of the tumor (above 6 cm in diameter) and presence of necrosis within the tumor was significantly associated with high rate of lymph node metastasis (p = 0.000). Of all patients, 64% were at clinical stage III (specifically IIIB) and 70.4% had lymph node metastasis at the time of diagnosis. Only 4.3% of the patients were in clinical stage I at the time of diagnosis. Majority of the patients had invasive ductal carcinoma (91.5%) followed by mucinous carcinoma (5.2%), Invasive lobular carcinoma (3%) and in situ ductal carcinoma (0.3%). In all patients, 185 (56.4%) had tumor with histological grade 3. Breast cancer in this region show a trend towards relative young age at diagnosis with advanced stage at diagnosis and high rate of lymph node metastasis. Poor Referral system, lack of screening programs and natural aggressive biological behavior of tumor may contribute to advanced disease at the time of diagnosis

    G2A Signaling Dampens Colitic Inflammation via Production of IFN-γ

    Get PDF
    Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein–coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A2/2 mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A2/2 colons showed significantly more TNF-a+ and Ly6ChiMHCII2 proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A2/2 mice. G2A2/2 mice also had less IFN-g in inflamed colon tissues than wild-type mice. Fewer CD4+ lymphocytes were recruited to inflamed G2A2/2 colons, and fewer colonic lymphocytes produced IFN-g upon ex vivo stimulation. Administration of IFN-g to G2A2/2 mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-g reduced the numbers of TNF-a+ monocyte and enhanced their maturation from Ly6ChiMHCII2 to Ly6CintMHCII+ . Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-g, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues

    ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages

    Get PDF
    The mammalian ATP-binding cassette transporters A1 and A7 (ABCA1 and -A7) show sequence similarity to CED-7, a Caenorhabditis elegans gene that mediates the clearance of apoptotic cells. Using RNA interference or gene targeting, we show that knock down of macrophage ABCA7 but not -A1 results in defective engulfment of apoptotic cells. In response to apoptotic cells, ABCA7 moves to the macrophage cell surface and colocalizes with the low-density lipoprotein receptor–related protein 1 (LRP1) in phagocytic cups. The cell surface localization of ABCA7 and LRP1 is defective in ABCA7-deficient cells. C1q is an opsonin of apoptotic cells that acts via phagocyte LRP1 to induce extracellular signal–regulated kinase (ERK) signaling. We show that ERK signaling is required for phagocytosis of apoptotic cells and that ERK phosphorylation in response to apoptotic cells or C1q is defective in ABCA7-deficient cells. These studies reveal a major role of ABCA7 and not -A1 in the clearance of apoptotic cells and therefore suggest that ABCA7 is an authentic orthologue of CED-7
    corecore