3,167 research outputs found
Recommended from our members
Comment on: The Vitamin D⁻Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554.
In response to a recent article by Jones et al. (Nutrients 10: 554⁻568, 2018) [1], we agree that three distinctive features evolved in Homo erectus prior to the emergence of modern humans.[...]
Recommended from our members
Could Inflammaging and Its Sequelae Be Prevented or Mitigated?
Aged humans display a chronic and low-grade inflammation, termed "inflammaging", which has been potentially linked to the subsequent development of some aging-associated systemic disorders, including type 2 diabetes, atherosclerotic cardiovascular disease, Alzheimer's disease and obesity. Though the origin of aging-associated systemic inflammation is uncertain, epidemiological studies show that inflammatory dermatoses (psoriasis and eczema) are risk factors for some aging-associated systemic disorders, such as type 2 diabetes and atherosclerotic cardiovascular disease. Moreover, recent studies demonstrate that epidermal dysfunction in aged skin not only causes cutaneous inflammation, but also a subsequent increase in circulating levels of proinflammatory cytokines, suggesting that the skin could be a major contributor to inflammaging. This hypothesis is further supported by reductions in circulating levels of proinflammatory cytokines in both aged humans and murine, following improvements in epidermal function with topical emollients. Therefore, correction of epidermal dysfunction could be a novel approach for the prevention and mitigation of certain inflammation-associated chronic disorders in aged humans
Stratum Corneum Defensive Functions: An Integrated View
Most epidermal functions can be considered as protective, or more specifically, as defensive in nature. Yet, the term “barrier function” is often used synonymously with only one such defensive function, though arguably its most important, i.e., permeability barrier homeostasis. Regardless of their relative importance, these protective cutaneous functions largely reside in the stratum corneum (SC). In this review, I first explore the ways in which the multiple defensive functions of the SC are linked and interrelated, either by their shared localization or by common biochemical processes; how they are co-regulated in response to specific stressors; and how alterations in one defensive function impact other protective functions. Then, the structural and biochemical basis for these defensive functions is reviewed, including metabolic responses and signaling mechanisms of barrier homeostasis. Finally, the clinical consequences and therapeutic implications of this integrated perspective are provided
Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells
Chicken erythroblasts transformed with avian erythroblastosis virus or S13 virus provide suitable model systems with which to analyze the maturation of immature erythroblasts into erythrocytes. The transformed cells are blocked in differentiation at around the colony-forming unit- erythroid stage of development but can be induced to differentiate in vitro. Analysis of the expression and assembly of components of the membrane skeleton indicates that these cells simultaneously synthesize alpha-spectrin, beta-spectrin, ankyrin, and protein 4.1 at levels that are comparable to those of mature erythroblasts. However, they do not express any detectable amounts of anion transporter. The peripheral membrane skeleton components assemble transiently and are subsequently rapidly catabolized, resulting in 20-40-fold lower steady-state levels than are found in maturing erythrocytes. Upon spontaneous or chemically induced terminal differentiation of these cells expression of the anion transporter is initiated with a concommitant increase in the steady- state levels of the peripheral membrane-skeletal components. These results suggest that during erythropoiesis, expression of the peripheral components of the membrane skeleton is initiated earlier than that of the anion transporter. Furthermore, they point a key role for the anion transporter in conferring long-term stability to the assembled erythroid membrane skeleton during terminal differentiation
Forward Stochastic Reachability Analysis for Uncontrolled Linear Systems using Fourier Transforms
We propose a scalable method for forward stochastic reachability analysis for
uncontrolled linear systems with affine disturbance. Our method uses Fourier
transforms to efficiently compute the forward stochastic reach probability
measure (density) and the forward stochastic reach set. This method is
applicable to systems with bounded or unbounded disturbance sets. We also
examine the convexity properties of the forward stochastic reach set and its
probability density. Motivated by the problem of a robot attempting to capture
a stochastically moving, non-adversarial target, we demonstrate our method on
two simple examples. Where traditional approaches provide approximations, our
method provides exact analytical expressions for the densities and probability
of capture.Comment: V3: HSCC 2017 (camera-ready copy), DOI updated, minor changes | V2:
Review comments included | V1: 10 pages, 12 figure
Overexpression of hedgehog signaling is associated with epidermal tumor formation in vitamin D receptor-null mice.
The vitamin D receptor (VDR) ligand, 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), reduces proliferation and enhances differentiation, and thus has been investigated for a role in preventing or treating cancer. Mice deficient for the VDR display a hyperproliferative response in the hair follicle and epidermis and decreased epidermal differentiation. Unlike their wild-type littermates, when treated with 7,12 dimethylbenzanthracene (DMBA) or UVB, they develop skin tumors, including some characteristic of overexpression of the hedgehog (Hh) pathway. Both the epidermis and utricles of the VDR-null animals overexpress elements of the Hh pathway (sonic hedgehog (Shh) 2.02-fold, patched1 1.58-fold, smoothened 3.54-fold, glioma-associated oncogene homolog (Gli)1 1.17-fold, and Gli2 1.66-fold). This overexpression occurs at an age (11 weeks) at which epidermal hyperproliferation is most visible and is spatially controlled in the epidermis. DMBA- or UVB-induced tumors in the VDR-null mice also overexpress elements of this pathway. Moreover, 1,25(OH)(2)D(3) downregulates the expression of some members of the Hh pathway in an epidermal explants culture system, suggesting a direct regulation by 1,25(OH)(2)D(3). Our results suggest that increased expression of Shh in the keratinocytes of the VDR-null animal activates the Hh pathway, predisposing the skin to the development of both malignant and benign epidermal neoplasms
Efficacy of combined peroxisome proliferator-activated receptor-α ligand and glucocorticoid therapy in a murine model of atopic dermatitis.
Although topical glucocorticoids (GCs) show potent anti-inflammatory activity in inflamed skin, they can also exert numerous harmful effects on epidermal structure and function. In contrast, topical applications of ligands of peroxisome proliferator-activated receptor-α (PPARα) not only reduce inflammation but also improve cutaneous barrier homeostasis. Therefore, we examined whether sequential topical GCs followed by topical Wy14643 (a ligand of PPARα) might be more effective than either alone for atopic dermatitis (AD) in a hapten (oxazolone (Ox))-induced murine model with multiple features of AD (Ox-AD). Despite expected anti-inflammatory benefits, topical GC alone induced (i) epidermal thinning; (ii) reduced expression of involucrin, loricrin, and filaggrin; and (iii) allowed outside-to-inside penetration of an epicutaneous tracer. Although Wy14643 alone yielded significant therapeutic benefits in mice with mild or moderate Ox-AD, it was less effective in severe Ox-AD. Yet, topical application of Wy14643 after GC was not only significantly effective comparable with GC alone, but it also prevented GC-induced structural and functional abnormalities in permeability barrier homeostasis. Moreover, rebound flares were largely absent after sequential treatment with GC and Wy14643. Together, these results show that GC and PPARα ligand therapy together is not only effective but also prevents development of GC-induced side effects, including rebound flares, in murine AD
It Remains Unknown Whether Filaggrin Gene Mutations Evolved to Increase Cutaneous Synthesis of Vitamin D
About 8-10% of normal Northern Europeans are heterozygous carriers of common FLG mutations, while only 1-4% of southern Europeans display these mutations, and only very rarely are mutations detected in African populations. Although mutations are found in Asians, they are different from those encountered in Northern Europeans. Importantly, FLG mutation carriers have 10% increased serum vitamin D concentrations compared to controls. Based on these observations, we have proposed that this latitude-dependent gradient of FLG mutations across Europe, Asia and Africa could have provided an evolutionary advantage for heterozygous FLG mutation carriers, residing at northern latitudes, depletion of the FLG downstream product, trans-urocanic acid, would facilitate the intracutaneous synthesis of vitamin D3 by allowing increased transcutaneous absorption of UVB photons. Such loss-of-function FLG mutations would have provided an evolutionary advantage for modern humans, living in the far North of Europe, where little UV-B penetrates the atomosphere. In a recent article, it was concluded not only that the UVB-Vitamin D3 hypothesis is invalid, but also that FLG genetic variations, including loss-of-function variants, provide little or no impact on the fitness of modern humans. While we welcome studies that reassess our hypothesis, their conclusions are not valid for reasons explained in this letter
Mammalian Stratum Corneum Contains Physiologic Lipid Thermal Transitions
Using a new high-sensitivity differential scanning calorimeter, capable of very slow scanning rates and large sample volumes, we examined the thermal transitions in neonatal mouse stratum corneum. Both physiological and supraphysiological transitions were found in intact tissue that were displaced on cooling and obliterated by solvent treatment establishing them as lipids. Physiologic peaks were encountered in lipid extracts from the same tissues. With heating and cooling recycling we found a novel effect of thermal “fractionation” of the peaks into discrete subfractions that appeared to correspond roughly the number of bands found on thin-layer chromatography of the lipid extracts
- …