82 research outputs found

    Diffuse interstellar bands {\lambda}5780 and {\lambda}5797 in the Antennae Galaxy as seen by MUSE

    Full text link
    ABRIDGED: Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group (LG) will surely blossom in the era of the ELTs. A possibility that needs to be explored is the use of integral field spectrographs. We do so by using MUSE data for the Antennae Galaxy, the closest major galaxy merger. High S-to-N spectra were created by co-adding the signal of many spatial elements. The emission of the underlying stellar population was modeled using STARLIGHT. To our knowledge, we have derived the first maps for the DIBs at l5780 and l5797 in galaxies outside the LG. The l5780 DIB was detected in an area of ~0.6 arcmin2, corresponding to a linear scale of ~25 kpc2. This region was sampled using >200 independent lines of sight. The DIB l5797 was detected in >100 independent lines of sight. Both DIBs are associated with a region with high emission in the HI 21 cm line, implying a connection between atomic gas and DIBs, as the correlations for the Milky Way also suggest. Conversely, there is mild spatial association between the two DIBs and the molecular gas, in agreement with results for our Galaxy that indicate a lack of correlation between DIBs and molecular gas. The overall structure for the DIB strength distribution and extinction are comparable. Within the system, the l5780 DIB clearly correlates with the extinction. Both DIBs follow the relationship between equivalent width and reddening when data for several galaxies are considered. Unidentified Infrared emission Bands (UIBs, likely caused by PAHs) and the l5780 and l5797 DIBs show similar but not identical spatial distributions. We attribute the differences to extinction effects without necessarily implying a radically different nature of the respective carriers. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research.Comment: 12 pages, 13 figures, accepted by Astronomy & Astrophysics; version corrected by English edito

    Resolving stellar populations with integral field spectroscopy

    Get PDF
    High-performance instruments at large ground-based telescopes have made integral field spectroscopy (IFS) a powerful tool for the study of extended objects such as galaxies, nebulae, or even larger survey fields on the sky. Here we discuss the capabilities of IFS for the study of resolved stellar populations, using the new method of PSF-fitting crowded field IFS, analogous to the well-established technique of crowded field photometry with image sensors. We review early pioneering work with first generation integral field spectrographs, the breakthrough achieved with the MUSE instrument at the ESO Very Large Telescope, the remarkable progress accomplished with MUSE in the study of globular clusters, and first results on nearby galaxies. We discuss the synergy of integral field spectrographs at 8-10m class telescopes with future facilities such as the Extremely Large Telescope (ELT).Comment: 6 pages, 3 figures, accepted for AN special issue for STARS2019/SMFNS201

    The central dynamics of M3, M13, and M92: Stringent limits on the masses of intermediate-mass black holes

    Full text link
    We used the PMAS integral field spectrograph to obtain large sets of radial velocities in the central regions of three northern Galactic globular clusters: M3, M13, and M92. By applying the novel technique of crowded field 3D spectroscopy, we measured radial velocities for about 80 stars within the central ~ 10 arcsec of each cluster. These are by far the largest spectroscopic datasets obtained in the innermost parts of these clusters up to now. To obtain kinematical data across the whole extent of the clusters, we complement our data with measurements available in the literature. We combine our velocity measurements with surface brightness profiles to analyse the internal dynamics of each cluster using spherical Jeans models, and investigate whether our data provide evidence for an intermediate-mass black hole in any of the clusters. The surface brightness profiles reveal that all three clusters are consistent with a core profile, although shallow cusps cannot be excluded. We find that spherical Jeans models with a constant mass-to-light ratio provide a good overall representation of the kinematical data. A massive black hole is required in none of the three clusters to explain the observed kinematics. Our 1sigma (3sigma) upper limits are 5300 M_sun (12000 M_sun) for M3, 8600 M_sun (13000 M_sun) for M13, and 980 M_sun (2700 M_sun) for M92. A puzzling circumstance is the existence of several potential high velocity stars in M3 and M13, as their presence can account for the majority of the discrepancies that we find in our mass limits compared to M92.Comment: accepted for publication in A&A, 20 pages, 15 figures, tables D1 to D6 only available at CD

    Large Velocity Gradients in the Tidal Tails of the Interacting Galaxy AM 1353-272 ("The Dentist's Chair")

    Get PDF
    We present VLT observations of the interacting system AM 1353-272. Using the FORS2 instrument, we studied the kinematics of the ionized gas along its prominent tidal tails and discovered strikingly large velocity gradients associated with seven luminous tidal knots. These kinematical structures cannot be caused by streaming motion and most likely do not result from projection effects. More probably, instabilities in the tidal tails have lead to the formation of kinematically decoupled objects which could be the progenitors of self-gravitating Tidal Dwarf Galaxies.Comment: 3 color figures, to appear 10. Nov. 2002 in ApJ
    • …
    corecore