27 research outputs found

    Intrinsic aerobic capacity sets a divide for aging and longevity

    Get PDF
    <p><b>Rationale:</b> Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity.</p> <p><b>Objectives:</b> Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis).</p> <p><b>Methods and Results:</b> Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO<sub>2max</sub>), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO<sub>2max</sub>, measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca<sup>2+</sup> handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo<sub>2</sub>), and lean body mass were all better sustained with age in rats bred for high aerobic capacity.</p> <p><b>Conclusions:</b> These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.</p&gt

    Angiotensin AT 2

    No full text

    Regulation of renal 12(S)-hydroxyeicosatetraenoic acid in diabetes by angiotensin AT1 and AT2 receptors

    No full text
    Diabetes is associated with increased production of 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE]. The mechanisms involved in this process remain unclear. We hypothesized that hyperglycemia and angiotensin II (ANG II) regulate renal 12(S)-HETE production via a balance between angiotensin AT1 and AT2 receptors activities. Using a microdialysis technique, renal interstitial fluid (RIF) levels of ANG II and 12(S)-HETE were monitored in normal control and streptozotocin-induced diabetic rats at baseline and then weekly thereafter for 12 wk. In a second group of normal and diabetic rats, 3 wk after development of diabetes, we monitored RIF 12(S)-HETE levels in response to acute AT1 receptor blockade with valsartan or AT2 receptor blockade with PD123319 individually or combined. Two weeks after induction of diabetes there was a 404% increase in ANG II (P < 0.05), a 149% increase in 12S-HETE (P < 0.05), and a 649% increase in urinary albumin excretion (P < 0.05). These levels remained elevated throughout the study. PD123319 given alone had no effect on 12(S)-HETE. Valsartan decreased 12(S)-HETE by 61.6% (P < 0.0001), a response that was abrogated when PD123319 was given with valsartan. These data demonstrate that hyperglycemia increases renal ANG II and 12(S)-HETE levels. The increase in 12(S)-HETE is mediated via AT1 receptor. The attenuation of the effects of AT1 receptor blockade by PD123319 suggests that AT2 receptor contributes to the downregulation of renal 12(S)-HETE production

    Synthesis and characterization of laminated Si/SiC composites

    Get PDF
    Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results

    Angiotensin II Type-2 Receptors Modulate Inflammation Through Signal Transducer and Activator of Transcription Proteins 3 Phosphorylation and TNFα Production

    No full text
    Angiotensin subtype-1 receptor (AT1R) influences inflammatory processes through enhancing signal transducer and activator of transcription proteins 3 (STAT3) signal transduction, resulting in increased tumor necrosis factor-α (TNF-α) production. Although angiotensin subtype-2 receptor (AT2R), in general, antagonizes AT1R-stimulated activity, it is not known if AT2R has any anti-inflammatory effects. In this study, we tested the hypothesis that AT2R activation plays an anti-inflammatory role by reducing STAT3 phosphorylation and TNF-α production. Changes in AT2R expression, TNF-α production, and STAT3 phosphorylation were quantified by Western blotting, Bio-Plex cytokine, and phosphoprotein cellular signaling assays in PC12W cells that express AT2R but not AT1R, in response to the AT2R agonist, CGP-42112 (CGP, 100 nm), or AT2R antagonist PD-123319 (PD, 1 μm). A 100% increase in AT2R expression in response to stimulation with its agonist CGP was observed. Further, AT2R activation reduced TNF-α production by 39% and STAT3 phosphorylation by 83%. In contrast, PD decreased AT2R expression by 76%, increased TNF-α production by 84%, and increased STAT3 phosphorylation by 67%. These findings suggest that increased AT2R expression may play a role in the observed decrease in inflammatory pathway activation through decreased TNF-α production and STAT3 signaling. Restoration of AT2R expression and/or its activation constitute a potentially novel therapeutic target for the management of inflammatory processes

    Genome-Wide Analysis in Drosophila Reveals the Genetic Basis of Variation in Age-Specific Physical Performance and Response to ACE Inhibition

    No full text
    Despite impressive results in restoring physical performance in rodent models, treatment with renin&ndash;angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines of Drosophila melanogaster, we tested the effects of Lisinopril on age-specific climbing speed and endurance. Our data show that functional response and sensitivity to Lisinopril treatment ranges from significant protection against physical decline to increased weakness depending on genotype and age. Furthermore, genome-wide analyses led to identification of evolutionarily conserved genes in the WNT signaling pathway as being significantly associated with variations in physical performance traits and sensitivity to Lisinopril treatment. Genetic knockdown of genes in the WNT signaling pathway, Axin, frizzled, nemo, and wingless, diminished or abolished the effects of Lisinopril treatment on climbing speed traits. Our results implicate these genes as contributors to the genotype- and age-specific effects of Lisinopril treatment and because they have orthologs in humans, they are potential therapeutic targets for improvement of resiliency. Our approach should be widely applicable for identifying genomic variants that predict age- and sex-dependent responses to any type of pharmaceutical treatment

    Genome-Wide Analysis in

    No full text
    Despite impressive results in restoring physical performance in rodent models, treatment with renin-angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines o
    corecore