73 research outputs found
Evaluating Maximum Likelihood Estimation Methods to Determine the Hurst Coefficient
A maximum likelihood estimation method implemented in S-PLUS (S-MLE) to estimate the Hurst coefficient (H) is evaluated. The Hurst coefficient, with 0.5\u3cHS-MLE was developed to estimate H for fractionally differenced (fd) processes. However, in practice it is difficult to distinguish between fd processes and fractional Gaussian noise (fGn) processes. Thus, the method is evaluated for estimating H for both fd and fGn processes. S-MLE gave biased results of H for fGn processes of any length and for fd processes of lengths less than 210. A modified method is proposed to correct for this bias. It gives reliable estimates of H for both fd and fGn processes of length greater than or equal to 211
Recommended from our members
Analysis of sequence-based copy number variation detection tools for cancer studies
Recommended from our members
The future of genomics in pathology
The recent advances in technology and the promise of cheap and fast whole genomic data offer the possibility to revolutionise the discipline of pathology. This should allow pathologists in the near future to diagnose disease rapidly and early to change its course, and to tailor treatment programs to the individual. This review outlines some of these technical advances and the changes needed to make this revolution a reality
Recommended from our members
Systems analysis of inflammatory bowel disease based on comprehensive gene information
<p>Abstract</p> <p>Background</p> <p>The rise of systems biology and availability of highly curated gene and molecular information resources has promoted a comprehensive approach to study disease as the cumulative deleterious function of a collection of individual genes and networks of molecules acting in concert. These "human disease networks" (HDN) have revealed novel candidate genes and pharmaceutical targets for many diseases and identified fundamental HDN features conserved across diseases. A network-based analysis is particularly vital for a study on polygenic diseases where many interactions between molecules should be simultaneously examined and elucidated. We employ a new knowledge driven HDN gene and molecular database systems approach to analyze Inflammatory Bowel Disease (IBD), whose pathogenesis remains largely unknown.</p> <p>Methods and Results</p> <p>Based on drug indications for IBD, we determined sibling diseases of mild and severe states of IBD. Approximately 1,000 genes associated with the sibling diseases were retrieved from four databases. After ranking the genes by the frequency of records in the databases, we obtained 250 and 253 genes highly associated with the mild and severe IBD states, respectively. We then calculated functional similarities of these genes with known drug targets and examined and presented their interactions as PPI networks.</p> <p>Conclusions</p> <p>The results demonstrate that this knowledge-based systems approach, predicated on functionally similar genes important to sibling diseases is an effective method to identify important components of the IBD human disease network. Our approach elucidates a previously unknown biological distinction between mild and severe IBD states.</p
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure
Recommended from our members
A Simulation Platform to Examine Heterogeneity Influence on Treatment
Although a protocol aims to guide treatment management and optimize overall outcomes, the benefits and harms for each individual vary due to heterogeneity. Some protocols integrate clinical and genetic variation to provide treatment recommendation; it is not clear whether such integration is sufficient. If not, treatment outcomes may be sub-optimal for certain patient sub-populations. Unfortunately, running a clinical trial to examine such outcome responses is cost prohibitive and requires a significant amount of time to conduct the study. We propose a simulation approach to discover this knowledge from electronic medical records; a rapid method to reach this goal. We use the well-known drug warfarin as an example to examine whether patient characteristics, including race and the genes CYP2C9 and VKORC1, have been fully integrated into dosing protocols. The two genes mentioned above have been shown to be important in patient response to warfarin
Streaming Support for Data Intensive Cloud-Based Sequence Analysis
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation
Recommended from our members
Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish
The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption
Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome
Recently, worldwide incidences of young adult aggressive colorectal cancer (CRC) have rapidly increased. Of these incidences diagnosed as familial Lynch syndrome (LS) CRC, outcomes are extremely poor. In this study, we seek novel familial germline variants from a large pedigree Tunisian family with 12 LS-affected individuals to identify putative germline variants associated with varying risk of LS. Whole-genome sequencing analysis was performed to identify known and novel germline variants shared between affected and non-affected pedigree members. SNPs, indels, and structural variants (SVs) were computationally identified, and their oncological influence was predicted using the Genetic Association of Complex Diseases and Disorders, OncoKB, and My Cancer Genome databases. Of 94 germline familial variants identified with predicted functional impact, 37 SNPs/indels were detected in 28 genes, 2 of which (MLH1 and PRH1-TAS2R14) have known association with CRC and 4 others (PPP1R13B, LAMA5, FTO, and NLRP14) have known association with non-CRC cancers. In addition, 48 of 57 identified SVs overlap with 43 genes. Three of these genes (RELN, IRS2, and FOXP1) have a known association with non-CRC digestive cancers and one (RRAS2) has a known association with non-CRC cancer. Our study identified 83 novel, predicted functionally impactful germline variants grouped in three “variant risk clusters” shared in three familiarly associated LS groups (high, intermediate and low risk). This variant characterization study demonstrates that large pedigree investigations provide important evidence supporting the hypothesis that different “variant risk clusters” can convey different mechanisms of risk and oncogenesis of LS-CRC even within the same pedigree
Genotator: A disease-agnostic tool for genetic annotation of disease
<p>Abstract</p> <p>Background</p> <p>Disease-specific genetic information has been increasing at rapid rates as a consequence of recent improvements and massive cost reductions in sequencing technologies. Numerous systems designed to capture and organize this mounting sea of genetic data have emerged, but these resources differ dramatically in their disease coverage and genetic depth. With few exceptions, researchers must manually search a variety of sites to assemble a complete set of genetic evidence for a particular disease of interest, a process that is both time-consuming and error-prone.</p> <p>Methods</p> <p>We designed a real-time aggregation tool that provides both comprehensive coverage and reliable gene-to-disease rankings for any disease. Our tool, called Genotator, automatically integrates data from 11 externally accessible clinical genetics resources and uses these data in a straightforward formula to rank genes in order of disease relevance. We tested the accuracy of coverage of Genotator in three separate diseases for which there exist specialty curated databases, Autism Spectrum Disorder, Parkinson's Disease, and Alzheimer Disease. Genotator is freely available at <url>http://genotator.hms.harvard.edu</url>.</p> <p>Results</p> <p>Genotator demonstrated that most of the 11 selected databases contain unique information about the genetic composition of disease, with 2514 genes found in only one of the 11 databases. These findings confirm that the integration of these databases provides a more complete picture than would be possible from any one database alone. Genotator successfully identified at least 75% of the top ranked genes for all three of our use cases, including a 90% concordance with the top 40 ranked candidates for Alzheimer Disease.</p> <p>Conclusions</p> <p>As a meta-query engine, Genotator provides high coverage of both historical genetic research as well as recent advances in the genetic understanding of specific diseases. As such, Genotator provides a real-time aggregation of ranked data that remains current with the pace of research in the disease fields. Genotator's algorithm appropriately transforms query terms to match the input requirements of each targeted databases and accurately resolves named synonyms to ensure full coverage of the genetic results with official nomenclature. Genotator generates an excel-style output that is consistent across disease queries and readily importable to other applications.</p
- …