3 research outputs found

    Oxidative carboxylation of 1-Decene to 1,2-Decylene carbonate

    Get PDF
    © 2018 The Author(s) Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO 2 , a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach

    The controlled catalytic oxidation of furfural to furoic acid using AuPd/MgIJ(OH)2

    Get PDF
    © 2017 The Royal Society of Chemistry. The emphasis of modern chemistry is to satisfy the needs of consumers by using methods that are sustainable and economical. Using a 1% AuPd/Mg(OH) 2 catalyst in the presence of NaOH and under specific reaction conditions furfural; a platform chemical formed from lignocellulosic biomass, can be selectively oxidised to furoic acid, and the catalyst displays promising reusability for this reaction. The mechanism of this conversion is complex with multiple competing pathways possible. The experimental conditions and AuPd metal ratio can be fine-tuned to provide enhanced control of the reaction selectivity. Activation energies were derived for the homogeneous Cannizzaro pathway and the catalytic oxidation of furfural using the initial rates methodology. This work highlights the potential of using a heterogeneous catalyst for the oxidation of furfural to furoic acid that has potential for commercial application

    <i>x</i>Ni–<i>y</i>Cu–ZrO<sub>2</sub> catalysts for the hydrogenation of levulinic acid to gamma valorlactone

    No full text
    <p>We have investigated <i>x</i>Ni–<i>y</i>Cu–ZrO<sub>2</sub> catalysts for the selective synthesis of γ-valerolactone from levulinic acid (LA). A series of <i>x</i>Ni–<i>y</i>Cu–ZrO<sub>2</sub> catalysts with a consistent metal loading of 50% but varying Ni and Cu composition were prepared by an oxalate gel precipitation method and tested for LA hydrogenation. Ni-rich catalysts showed higher catalytic activity compared with Cu-rich formulations with a 45Ni–5Cu–ZrO<sub>2</sub> composition yielding 76% γ-valerolactone after a reaction time of 30 min at 200 °C. Characterisation of the materials by XRD, surface area measurements and TPR allow us to attribute the differences in performance seen for different compositions to particle size and nanoparticle dispersion effects. DFT calculations also showed that a shift of d-band centre to higher energies with the mole fraction of Ni in Cu–Ni alloys would be expected to lead to improved hydrogen dissociation in Ni-rich catalysts and so aid hydrogenation activity.</p
    corecore