36 research outputs found

    Novel base triples in RNA structures revealed by graph theoretical searching methods

    Get PDF
    Background: Highly hydrogen bonded base interactions play a major part in stabilizing the tertiary structures of complex RNA molecules, such as transfer-RNAs, ribozymes and ribosomal RNAs. Results: We describe the graph theoretical identification and searching of highly hydrogen bonded base triples, where each base is involved in at least two hydrogen bonds with the other bases. Our approach correlates theoretically predicted base triples with literature-based compilations and other actual occurrences in crystal structures. The use of 'fuzzy' search tolerances has enabled us to discover a number of triple interaction types that have not been previously recorded nor predicted theoretically. Conclusions: Comparative analyses of different ribosomal RNA structures reveal several conserved base triple motifs in 50S rRNA structures, indicating an important role in structural stabilization and ultimately RNA function

    Immunogenicity, toxicology, pharmacokinetics and pharmacodynamics of growth hormone ligand-receptor fusions A B S T R A C T

    Get PDF
    A fundamental concern for all new biological therapeutics is the possibility of inducing an immune response. We have recently demonstrated that an LR-fusion (ligand-receptor fusion) of growth hormone generates a potent long-acting agonist; however, the immunogenicity and toxicity of these molecules have not been tested. To address these issues, we have designed molecules with low potential as immunogens and undertaken immunogenicity and toxicology studies in Macaca fascicularis and pharmacokinetic and pharmacodynamic studies in rats. Two variants of the LR-fusion, one with a flexible linker (GH-LRv2) and the other without (GH-LRv3), were tested. Comparison was made with native human GH (growth hormone). GH-LRv2 and GHLRv3 demonstrated similar pharmacokinetics in rats, showing reduced clearance compared with native GH and potent agonist activity with respect to body weight gain in a hypophysectomized rat model. In M. fascicularis, a low level of antibodies to GH-LRv2 was found in one sample, but there was no other evidence of any immunogenic response to the other fusion protein. There were no toxic effects and specifically no changes in histology at injection sites after two repeated administrations. The pharmacokinetic profiles in monkeys confirmed long half-lives for both GHLRv2 and GH-LRv3 representing exceptionally delayed clearance over rhGH (recombinant human GH). The results suggest that repeated administration of a GH LR-fusion is safe, non-toxic, and the pharmacokinetic profile suggests that two to three weekly administrations is a potential therapeutic regimen for humans

    Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling

    Get PDF
    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH–GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize

    IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank

    Get PDF
    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/

    Structure of the NheA Component of the Nhe Toxin from Bacillus cereus: Implications for Function

    Get PDF
    The structure of NheA, a component of the Bacillus cereus Nhe tripartite toxin, has been solved at 2.05 Å resolution using selenomethionine multiple-wavelength anomalous dispersion (MAD). The structure shows it to have a fold that is similar to the Bacillus cereus Hbl-B and E. coli ClyA toxins, and it is therefore a member of the ClyA superfamily of α-helical pore forming toxins (α-PFTs), although its head domain is significantly enlarged compared with those of ClyA or Hbl-B. The hydrophobic β-hairpin structure that is a characteristic of these toxins is replaced by an amphipathic β-hairpin connected to the main structure via a β-latch that is reminiscent of a similar structure in the β-PFT Staphylococcus aureus α-hemolysin. Taken together these results suggest that, although it is a member of an archetypal α-PFT family of toxins, NheA may be capable of forming a β rather than an α pore

    Direct observation of DNA threading in flap endonuclease complexes

    Get PDF
    Maintenance of genome integrity requires that branched nucleic acid molecules are accurately processed to produce double-helical DNA. Flap endonucleases are essential enzymes that trim such branched molecules generated by Okazaki fragment synthesis during replication. Here, we report crystal structures of bacteriophage T5 flap endonuclease in complexes with intact DNA substrates, and products, at resolutions of 1.9–2.2 Å. They reveal single-stranded DNA threading through a hole in the enzyme enclosed by an inverted Vshaped helical arch straddling the active site. Residues lining the hole induce an unusual barb-like conformation in the DNA substrate juxtaposing the scissile phosphate and essential catalytic metal ions. A series of complexes and biochemical analyses show how the substrate’s single-stranded branch approaches, threads through, and finally emerges on the far side of the enzyme. Our studies suggest that substrate recognition involves an unusual “flycasting, thread, bend and barb” mechanis

    Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches.

    Get PDF
    Escherichia coli cyclic-AMP receptor protein (CRP) represents one of the paradigms of bacterial gene regulation. Yet despite decades of intensive study, new information continues to emerge that prompts reassessment of this classic regulatory system. Moreover, in recent years CRPs from several other bacterial species have been characterized, allowing the general applicability of the CRP paradigm to be tested. Here the properties of the E. coli, Mycobacterium tuberculosis and Pseudomonas putida CRPs are considered in the context of the ecological niches occupied by these bacteria. It appears that the cyclic-AMP-CRP regulatory system has been adapted to respond to distinct external and internal inputs across a broad sensitivity range that is, at least in part, determined by bacterial lifestyles
    corecore