49 research outputs found

    Direct application of plasmid DNA containing type I interferon transgenes to vaginal mucosa inhibits HSV-2 mediated mortality

    Get PDF
    The application of naked DNA containing type I interferon (IFN) transgenes is a promising potential therapeutic approach for controlling chronic viral infections. Herein, we detail the application of this approach that has been extensively used to restrain ocular HSV-1 infection, for antagonizing vaginal HSV-2 infection. We show that application of IFN-α1, -α5, and –ÎČ transgenes to vaginal mouse lumen 24 hours prior to HSV-2 infection reduces HSV-2 mediated mortality by 2.5 to 3-fold. However, other type I IFN transgenes (IFN- α4, -α5, -α6, and –α9) are non effectual against HSV-2. We further show that the efficacy of IFN-α1 transgene treatment is independent of CD4+ T lymphocytes. However, in mice depleted of CD8+ T lymphocytes, the ability of IFN-α1 transgene treatment to antagonize HSV-2 was lost

    The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis

    No full text
    Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in an HLA-DR4-restricted manner in the inflamed RA joint. The objective of this study was to investigate the potential role of MIA as an autoantigen. Collagen-induced arthritis (CIA) and anti-collagen antibody-induced arthritis (CAIA) were induced in MIA(-/-) mice. Anti-type II collagen (anti-CII) antibodies were measured by ELISA. T cell proliferation and cytokine production were assessed by flow cytometry. MIA(-/-) mice had a markedly reduced incidence and severity of CIA and CAIA compared with wild-type (WT) mice. Attenuation of disease was not related to defective binding of anti-CII antibodies to cartilage in the absence of MIA. However, MIA(-/-) mice had significantly reduced anti-CII IgG1 and IgG2a antibody levels accompanied by an increase in FoxP3-expressing CD25(+)CD4(+) regulatory T cells. This was paralleled by a significant reduction in CII-specific IFN-Îł production by T cells in MIA(-/-) but not WT animals, suggesting a qualitative impact of MIA on the collagen-induced Th1 response. Furthermore, Ag-specific proliferation of T cells after restimulation with MIA in WT but not MIA(-/-) mice indicated the existence of MIA-specific T cells in the context of CIA. These data support a role for MIA as an autoantigen during arthritis development. Whether MIA can influence the balance of pathogenic vs regulatory responses in human RA remains to be investigate
    corecore