42 research outputs found

    Magnetization screening from gluonic currents and scaling law violation in the ratio of magnetic form factors for neutron and proton

    Full text link
    The ratio μpGEp/GMp{\mu_p}G_E^p/G_M^p exhibits a decrease for four-momentum transfer Q^2 increasing beyond 1 GeV^2 indicating different spatial distributions for charge and for magnetization inside the proton. One-gluon exchange currents can explain this behaviour. The SU(6) breaking induced by gluonic currents predicts furthermore that the ratio of neutron to proton magnetic form factors μpGMn/μnGMp{\mu_p}G_M^n/{\mu_n}G_M^p falls with increasing Q^2. We find that the experimental data are consistent with our expectations of an almost linear decrease of the ratio μpGMn/μnGMp{\mu_p}G_M^n/{\mu_n}G_M^p with increasing Q^2, supporting the statement that the spatial distributions of magnetization are different for protons and for neutrons.Comment: 10 pages, 3 figure

    Isoscalar short-range current in the deuteron induced by an intermediate dibaryon

    Get PDF
    A new model for short-range isoscalar currents in the deuteron and in the NN system is developed; it is based on the generation of an intermediate dibaryon which is the basic ingredient for the medium- and short-range NN interaction which was proposed recently by the present authors.This new current model can very well describe the experimental data for the three basic deuteron observables of isoscalar magnetic type, viz. the magnetic moment, the circular polarization of the photon in the npdγnp\to d\gamma process at thermal neutron energies and the structure function B up to Q2^2=60 fm2^{-2}.Comment: LaTex, 22 pages with 8 figure

    Effect of gluon-exchange pair-currents on the ratio G(E(P))/G(M(P))

    Full text link
    The effect of one-gluon-exchange (OGE) pair-currents on the ratio μpGEp/GMp\mu_p G_E^p/G_M^p for the proton is investigated within a nonrelativistic constituent quark model (CQM) starting from SU(6)×O(3)SU(6) \times O(3) nucleon wave functions, but with relativistic corrections. We found that the OGE pair-currents are important to reproduce well the ratio μpGEp/GMp\mu_p G_E^p/G_M^p. With the assumption that the OGE pair-currents are the driving mechanism for the violation of the scaling law we give a prediction for the ratio μnGEn/GMn\mu_n G_E^n/G_M^n of the neutron.Comment: 5 pages, 4 figure

    A dressed bag model study of the final-state NΔN\Delta interaction in photoproduction processes off the deuteron

    Full text link
    The impact of the short-range NΔN\Delta interaction on the pion photoproduction processes off the deuteron in the Δ\Delta-resonance region is studied in the framework of recently proposed dressed-bag model. A common dressing procedure for bare three- and six-quark states is used to describe both the pion decay widths of baryon resonances and the effective NNNN (or NΔN\Delta) interaction at short ranges related to the inner dressed-bag states. It is shown that the effect of short-range NΔN\Delta interaction for the forward-angle πo\pi^\mathrm{o} photoproduction off the deuteron cannot be neglected. The prospects for further development of the model to describe the short-range NNNN (or NΔN\Delta) correlations in the lightest nuclei are discussed

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge. The technological challenge of GERDA is to operate in a "background-free" regime in the region of interest (ROI) after analysis cuts for the full 100\,kg\cdotyr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around QββQ_{\beta\beta} for the 0νββ0\nu\beta\beta search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ2\nu\beta\beta) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.040.85+0.7810316.04^{+0.78}_{-0.85} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched BEGe data set and 14.680.52+0.4710314.68^{+0.47}_{-0.52} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    >

    No full text

    Gamma cascades in gadolinium isotopes

    No full text
    The compound nucleus model is employed to calculate the γ\gamma decay after neutron capture by the gadolinium isotopes 155^{155}Gd and 157^{157}Gd. The respective γ\gamma cascades are analyzed for possible use in rare-event searches like 0νββ0\nu \beta \beta decay as neutron-veto for neutron energies in the range from 0.1 keV to 10 MeV
    corecore