14 research outputs found

    The differential absorption of a series of P-glycoprotein substrates in isolated perfused lungs from Mdr1a/1b genetic knockout mice can be attributed to distinct physico-chemical properties: an insight into predicting transporter-mediated, pulmonary specific disposition

    Get PDF
    Purpose To examine if pulmonary P-glycoprotein (P-gp) is functional in an intact lung; impeding the pulmonary absorption and increasing lung retention of P-gp substrates administered into the airways. Using calculated physico-chemical properties alone build a predictive Quantitative Structure-Activity Relationship (QSAR) model distinguishing whether a substrate’s pulmonary absorption would be limited by P-gp or not. Methods A panel of 18 P-gp substrates were administered into the airways of an isolated perfused mouse lung (IPML) model derived from Mdr1a/Mdr1b knockout mice. Parallel intestinal absorption studies were performed. Substrate physico-chemical profiling was undertaken. Using multivariate analysis a QSAR model was established. Results A subset of P-gp substrates (10/18) displayed pulmonary kinetics influenced by lung P-gp. These substrates possessed distinct physico-chemical properties to those P-gp substrates unaffected by P-gp (8/18). Differential outcomes were not related to different intrinsic P-gp transporter kinetics. In the lung, in contrast to intestine, a higher degree of non-polar character is required of a P-gp substrate before the net effects of efflux become evident. The QSAR predictive model was applied to 129 substrates including eight marketed inhaled drugs, all these inhaled drugs were predicted to display P-gp dependent pulmonary disposition. Conclusions Lung P-gp can affect the pulmonary kinetics of a subset of P-gp substrates. Physico-chemical relationships determining the significance of P-gp to absorption in the lung are different to those operative in the intestine. Our QSAR framework may assist profiling of inhaled drug discovery candidates that are also P-gp substrates. The potential for P-gp mediated pulmonary disposition exists in the clinic

    Development of a small molecule that corrects misfolding and increases secretion of Z α1 -antitrypsin.

    Get PDF
    Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency

    Selectivity in the impact of P-glycoprotein upon pulmonary absorption of airway-dosed substrates: A study in ex vivo lung models using chemical inhibition and genetic knockout

    No full text
    P-glycoprotein (P-gp) mediated efflux is recognised to alter the absorption and disposition of a diverse range of substrates. Despite evidence showing the presence of P-gp within the lung, relatively little is known about the transporter's effect upon the absorption and distribution of drugs delivered via the pulmonary route. Here, we present data from an intact isolated rat lung model, alongside two isolated mouse lung models using either chemical or genetic inhibition of P-gp. Data from all three models show inhibition of P-gp increases the extent of absorption of a subset of P-gp substrates (e.g. rhodamine 123 and loperamide) whose physico-chemical properties are distinct from those whose pulmonary absorption remained unaffected (e.g. digoxin and saquinavir). This is the first study showing direct evidence of P-gp mediated efflux within an intact lung, a finding that should warrant consideration as part of respiratory drug discovery and development as well as in the understanding of pulmonary pharmacokinetic (PK)-pharmacodynamic (PD) relationship

    Studies on a series of potent, orally bioavailable, 5-HT1 receptor ligands-Part II

    No full text
    A series of 5-( piperidinylethyloxy) quinoline 5-HT1 receptor ligands have been studied by elaboration of the series of dual 5-HT1-SSRIs reported previously. These new compounds display a different in vitro pharmacological pro. le with potent affinity across the 5-HT1A, 5-HT1B and 5-HT1D receptors and selectivity against the serotonin transporter. Furthermore, they have improved pharmacokinetic profiles and CNS penetration

    Discovery of potent, orally bioavailable, selective 5-HT1A/B/D receptor antagonists

    No full text
    5-HT1 receptor antagonists have been discovered with good selectivity over the 5-HT transporter. This is the first report of highly potent, selective ligands for the 5-HT1A/B/D receptors with low intrinsic activity, which represent a useful set of molecules for further understanding the roles of the 5-HT1 receptor subtypes and providing new approaches,for the treatment of depression

    Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors

    No full text
    The human intestinal absorption of 241 drugs was evaluated. Three main methods were used to determine the human intestinal absorption: bioavailability, percentage of urinary excretion of drug-related material following oral administration, and the ratio of cumulative urinary excretion of drug-related material following oral and intravenous administration. The general solvation equation developed by Abraham's group was used to model the human intestinal absorption data of 169 drugs we considered to have reliable data. The model contains five Abraham descriptors calculated by the ABSOLV program. The results show that Abraham descriptors can successfully predict human intestinal absorption if the human absorption data is carefully classified based on solubility and administration dose to humans

    The efficacy of antenatal steroid therapy is dependent on the duration of low-concentration fetal exposure: evidence from a sheep model of pregnancy

    No full text
    BACKGROUND: Antenatal corticosteroids are among the most important and widely used interventions to improve outcomes for preterm infants. Antenatal corticosteroid dosing regimens remain unoptimized and without maternal weight-adjusted dosing. We, and others, have hypothesized that, once a low concentration of maternofetal steroid exposure is achieved and maintained, the duration of the steroid exposure determines treatment efficacy. Using a sheep model of pregnancy, we tested the relationship among steroid dose, duration of exposure, and treatment efficacy. OBJECTIVE: The study was conducted to investigate the relative importance of duration and magnitude of fetal corticosteroid exposure to mature the preterm fetal ovine lung. STUDY DESIGN: Ewes with single fetuses at 120 days gestation received an intravenous bolus (loading dose) followed by a maintenance infusion of betamethasone phosphate to target 12-hour fetal plasma betamethasone concentrations of (1) 20 ng/mL, (2) 10 ng/mL, or (3) 2 ng/mL. In a subsequent experiment, fetal plasma betamethasone concentrations were targeted at 2 ng/mL for 26 hours. Negative control animals received sterile saline solution. Positive control animals received 2 intramuscular injections of 0.25 mg/kg Celestone Chronodose (betamethasone phosphate thorn betamethasone acetate) spaced at 24 hours. Preterm lambs were delivered surgically and ventilated 48 hours after treatment commenced. Maternal and fetal plasma betamethasone concentrations were confirmed by mass spectrometry in a parallel study of chronically catheterized, corticosteroid-treated ewes and fetuses. RESULTS: The loading and maintenance doses were achieved and maintained the desired fetal plasma betamethasone concentrations of approximately 20, 10, and 2 ng/mL for 12 hours. Compared with the 12-hour infusion-treated animals, lambs from the positive control (2 intramuscular doses of 0.25 mg/kg Celestone Chronodose) group had the greatest functional lung maturation (compliance, gas exchange, arterial pH) and molecular evidence of maturation (glucocorticoid receptor signaling activation), despite having maximum fetal plasma betamethasone concentrations 2.5 times lower than animals in the 20 ng/mL betamethasone infusion group. Lambs from the 12-hour 2-ng/mL betamethasone infusion group had little functional lung maturation. In contrast, lambs from the 26-hour 2-ng/mL betamethasone infusion group had functional lung maturation equivalent to lambs from the positive control group. CONCLUSION: In preterm lambs that were exposed to antenatal corticosteroids, high maternofetal plasma betamethasone concentrations did not correlate with improved lung maturation. The largest and most consistent improvements in lung maturation were in animals that were exposed to either the clinical course of Celestone Chronodose or a lowdose betamethasone phosphate infusion to achieve a fetal plasma betamethasone concentration of approximately 2 ng/mL for 26 hours. The duration of low-concentration maternofetal steroid exposure, not total dose or peak drug exposure, is a key determinant for antenatal corticosteroids efficacy. These findings underscore the need to develop an optimized steroid dosing regimen that may improve both the efficacy and safety of antenatal corticosteroids therapy

    Current approaches for predicting human PK for small molecule development candidates: Findings from the IQ Human PK Prediction Working Group Survey

    No full text
    Accurate prediction of human clearance (CL) and volume of distribution at steady state (Vd,ss) for small molecule drug candidates is an essential component of assessing likely efficacious dose and clinical safety margins. In 2021, the IQ Consortium Human PK Prediction Working Group undertook a survey of IQ member companies to understand the current PK prediction methods being used to estimate these parameters across the pharmaceutical industry. The survey revealed a heterogeneity in approaches being used across the industry (e.g., use of allometric approaches, differing incorporation of binding terms, and inconsistent use of empirical correction factors for in vitro-in vivo extrapolation, IVIVE), which could lead to different PK predictions with the same input data. Member companies expressed an interest in improving human PK predictions by identifying the most appropriate compound-class specific methods, as determined by physiochemical properties and knowledge of CL pathways. Furthermore, there was consensus that increased understanding of the uncertainty inherent to the compound class-dependent prediction would be invaluable in aiding communication of human PK and dose uncertainty at the time of candidate nomination for development. The human PK Prediction Working Group is utilizing these survey findings to help interrogate clinical IV datasets from across the IQ consortium member companies to understand PK prediction accuracy and uncertainty from preclinical datasets
    corecore