12,563 research outputs found

    Comment on "Antilocalization in a 2D Electron Gas in a Random Magnetic Field"

    Full text link
    In a recent Letter, Taras-Semchuk and Efetov reconsider the problem of electron localization in a random magnetic field in two dimensions. They claim that due to the long-range nature of the vector potential correlations an additional term appears in the effective field theory (σ\sigma-model) of the problem, leading to delocalization at the one-loop level. This calls into question the results of earlier analytical studies, where the random magnetic field problem was mapped onto the conventional unitary-class σ\sigma-model, implying that the leading quantum correction is of two-loop order and of a localizing nature. We show in this Comment, however, that the new term in fact does not exist and was erroneously obtained by Taras-Semchuk and Efetov because of an inconsistent treatment violating gauge invariance.Comment: 1 page, 2 figure

    Lithium in strong magnetic fields

    Full text link
    The electronic structure of the lithium atom in a strong magnetic field 0 <= gamma <= 10 is investigated. Our computational approach is a full configuration interaction method based on a set of anisotropic Gaussian orbitals that is nonlinearly optimized for each field strength. Accurate results for the total energies and one-electron ionization energies for the ground and several excited states for each of the symmetries ^20^+, ^2(-1)^+, ^4(-1)^+, ^4(-1)^-, ^2(-2)^+, ^4(-2)^+, 4(3)+^4(-3)^{+} are presented. The behaviour of these energies as a function of the field strength is discussed and classified. Transition wave lengths for linear and circular polarized transitions are presented as well.Comment: 12 pages, 13 figures, accepted for publication in Phys. Rev.

    Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

    Get PDF
    Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research

    Flame Enhancement and Quenching in Fluid Flows

    Get PDF
    We perform direct numerical simulations (DNS) of an advected scalar field which diffuses and reacts according to a nonlinear reaction law. The objective is to study how the bulk burning rate of the reaction is affected by an imposed flow. In particular, we are interested in comparing the numerical results with recently predicted analytical upper and lower bounds. We focus on reaction enhancement and quenching phenomena for two classes of imposed model flows with different geometries: periodic shear flow and cellular flow. We are primarily interested in the fast advection regime. We find that the bulk burning rate v in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a is a constant depending on the relationship between the oscillation length scale of the flow and laminar front thickness. For cellular flow, we obtain v ~ U^{1/4}. We also study flame extinction (quenching) for an ignition-type reaction law and compactly supported initial data for the scalar field. We find that in a shear flow the flame of the size W can be typically quenched by a flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of the flow and tends to infinity if the flow profile has a plateau larger than a critical size. In a cellular flow, we find that the advection strength required for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and Modellin

    Dynamics of gelling liquids: a short survey

    Full text link
    The dynamics of randomly crosslinked liquids is addressed via a Rouse- and a Zimm-type model with crosslink statistics taken either from bond percolation or Erdoes-Renyi random graphs. While the Rouse-type model isolates the effects of the random connectivity on the dynamics of molecular clusters, the Zimm-type model also accounts for hydrodynamic interactions on a preaveraged level. The incoherent intermediate scattering function is computed in thermal equilibrium, its critical behaviour near the sol-gel transition is analysed and related to the scaling of cluster diffusion constants at the critical point. Second, non-equilibrium dynamics is studied by looking at stress relaxation in a simple shear flow. Anomalous stress relaxation and critical rheological properties are derived. Some of the results contradict long-standing scaling arguments, which are shown to be flawed by inconsistencies.Comment: 21 pages, 3 figures; Dedicated to Lothar Schaefer on the occasion of his 60th birthday; Changes: added comments on the gel phase and some reference

    G-protein betagamma-complex is crucial for efficient signal amplification in vision

    Get PDF
    A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. While much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions

    Thiazole-induced rigidification in substituted dithieno-tetrathiafulvalene : the effect of planarisation on charge transport properties

    Get PDF
    Two novel tetrathiafulvalene (TTF) containing compounds 1 and 2 have been synthesised via a four-fold Stille coupling between a tetrabromo-dithienoTTF 5 and stannylated thiophene 6 or thiazole 4. The optical and electrochemical properties of compounds 1 and 2 have been measured by UV-vis spectroscopy and cyclic voltammetry and the results compared with density functional theory (DFT) calculations to confirm the observed properties. Organic field effect transistor (OFET) devices fabricated from 1 and 2 demonstrated that the substitution of thiophene units for thiazoles was found to increase the observed charge transport, which is attributed to induced planarity through S-N interactions of adjacent thiazole nitrogen atoms and TTF sulfur atoms and better packing in the bulk
    corecore