12,563 research outputs found
Comment on "Antilocalization in a 2D Electron Gas in a Random Magnetic Field"
In a recent Letter, Taras-Semchuk and Efetov reconsider the problem of
electron localization in a random magnetic field in two dimensions. They claim
that due to the long-range nature of the vector potential correlations an
additional term appears in the effective field theory (-model) of the
problem, leading to delocalization at the one-loop level. This calls into
question the results of earlier analytical studies, where the random magnetic
field problem was mapped onto the conventional unitary-class -model,
implying that the leading quantum correction is of two-loop order and of a
localizing nature. We show in this Comment, however, that the new term in fact
does not exist and was erroneously obtained by Taras-Semchuk and Efetov because
of an inconsistent treatment violating gauge invariance.Comment: 1 page, 2 figure
Lithium in strong magnetic fields
The electronic structure of the lithium atom in a strong magnetic field 0 <=
gamma <= 10 is investigated. Our computational approach is a full configuration
interaction method based on a set of anisotropic Gaussian orbitals that is
nonlinearly optimized for each field strength. Accurate results for the total
energies and one-electron ionization energies for the ground and several
excited states for each of the symmetries ^20^+, ^2(-1)^+, ^4(-1)^+, ^4(-1)^-,
^2(-2)^+, ^4(-2)^+, are presented. The behaviour of these energies
as a function of the field strength is discussed and classified. Transition
wave lengths for linear and circular polarized transitions are presented as
well.Comment: 12 pages, 13 figures, accepted for publication in Phys. Rev.
Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants
Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research
Flame Enhancement and Quenching in Fluid Flows
We perform direct numerical simulations (DNS) of an advected scalar field
which diffuses and reacts according to a nonlinear reaction law. The objective
is to study how the bulk burning rate of the reaction is affected by an imposed
flow. In particular, we are interested in comparing the numerical results with
recently predicted analytical upper and lower bounds. We focus on reaction
enhancement and quenching phenomena for two classes of imposed model flows with
different geometries: periodic shear flow and cellular flow. We are primarily
interested in the fast advection regime. We find that the bulk burning rate v
in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a
is a constant depending on the relationship between the oscillation length
scale of the flow and laminar front thickness. For cellular flow, we obtain v ~
U^{1/4}. We also study flame extinction (quenching) for an ignition-type
reaction law and compactly supported initial data for the scalar field. We find
that in a shear flow the flame of the size W can be typically quenched by a
flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of
the flow and tends to infinity if the flow profile has a plateau larger than a
critical size. In a cellular flow, we find that the advection strength required
for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and
Modellin
Dynamics of gelling liquids: a short survey
The dynamics of randomly crosslinked liquids is addressed via a Rouse- and a
Zimm-type model with crosslink statistics taken either from bond percolation or
Erdoes-Renyi random graphs. While the Rouse-type model isolates the effects of
the random connectivity on the dynamics of molecular clusters, the Zimm-type
model also accounts for hydrodynamic interactions on a preaveraged level. The
incoherent intermediate scattering function is computed in thermal equilibrium,
its critical behaviour near the sol-gel transition is analysed and related to
the scaling of cluster diffusion constants at the critical point. Second,
non-equilibrium dynamics is studied by looking at stress relaxation in a simple
shear flow. Anomalous stress relaxation and critical rheological properties are
derived. Some of the results contradict long-standing scaling arguments, which
are shown to be flawed by inconsistencies.Comment: 21 pages, 3 figures; Dedicated to Lothar Schaefer on the occasion of
his 60th birthday; Changes: added comments on the gel phase and some
reference
Recommended from our members
A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion.
Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers
G-protein betagamma-complex is crucial for efficient signal amplification in vision
A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. While much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions
Thiazole-induced rigidification in substituted dithieno-tetrathiafulvalene : the effect of planarisation on charge transport properties
Two novel tetrathiafulvalene (TTF) containing compounds 1 and 2 have been synthesised via a four-fold Stille coupling between a tetrabromo-dithienoTTF 5 and stannylated thiophene 6 or thiazole 4. The optical and electrochemical properties of compounds 1 and 2 have been measured by UV-vis spectroscopy and cyclic voltammetry and the results compared with density functional theory (DFT) calculations to confirm the observed properties. Organic field effect transistor (OFET) devices fabricated from 1 and 2 demonstrated that the substitution of thiophene units for thiazoles was found to increase the observed charge transport, which is attributed to induced planarity through S-N interactions of adjacent thiazole nitrogen atoms and TTF sulfur atoms and better packing in the bulk
- …
