25 research outputs found

    In search of the authentic nation: landscape and national identity in Canada and Switzerland

    Get PDF
    While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration

    The seeds of divergence: the economy of French North America, 1688 to 1760

    Get PDF
    Generally, Canada has been ignored in the literature on the colonial origins of divergence with most of the attention going to the United States. Late nineteenth century estimates of income per capita show that Canada was relatively poorer than the United States and that within Canada, the French and Catholic population of Quebec was considerably poorer. Was this gap long standing? Some evidence has been advanced for earlier periods, but it is quite limited and not well-suited for comparison with other societies. This thesis aims to contribute both to Canadian economic history and to comparative work on inequality across nations during the early modern period. With the use of novel prices and wages from Quebec—which was then the largest settlement in Canada and under French rule—a price index, a series of real wages and a measurement of Gross Domestic Product (GDP) are constructed. They are used to shed light both on the course of economic development until the French were defeated by the British in 1760 and on standards of living in that colony relative to the mother country, France, as well as the American colonies. The work is divided into three components. The first component relates to the construction of a price index. The absence of such an index has been a thorn in the side of Canadian historians as it has limited the ability of historians to obtain real values of wages, output and living standards. This index shows that prices did not follow any trend and remained at a stable level. However, there were episodes of wide swings—mostly due to wars and the monetary experiment of playing card money. The creation of this index lays the foundation of the next component. The second component constructs a standardized real wage series in the form of welfare ratios (a consumption basket divided by nominal wage rate multiplied by length of work year) to compare Canada with France, England and Colonial America. Two measures are derived. The first relies on a “bare bones” definition of consumption with a large share of land-intensive goods. This measure indicates that Canada was poorer than England and Colonial America and not appreciably richer than France. However, this measure overestimates the relative position of Canada to the Old World because of the strong presence of land-intensive goods. A second measure is created using a “respectable” definition of consumption in which the basket includes a larger share of manufactured goods and capital-intensive goods. This second basket better reflects differences in living standards since the abundance of land in Canada (and Colonial America) made it easy to achieve bare subsistence, but the scarcity of capital and skilled labor made the consumption of luxuries and manufactured goods (clothing, lighting, imported goods) highly expensive. With this measure, the advantage of New France over France evaporates and turns slightly negative. In comparison with Britain and Colonial America, the gap widens appreciably. This element is the most important for future research. By showing a reversal because of a shift to a different type of basket, it shows that Old World and New World comparisons are very sensitive to how we measure the cost of living. Furthermore, there are no sustained improvements in living standards over the period regardless of the measure used. Gaps in living standards observed later in the nineteenth century existed as far back as the seventeenth century. In a wider American perspective that includes the Spanish colonies, Canada fares better. The third component computes a new series for Gross Domestic Product (GDP). This is to avoid problems associated with using real wages in the form of welfare ratios which assume a constant labor supply. This assumption is hard to defend in the case of Colonial Canada as there were many signs of increasing industriousness during the eighteenth and nineteenth centuries. The GDP series suggest no long-run trend in living standards (from 1688 to circa 1765). The long peace era of 1713 to 1740 was marked by modest economic growth which offset a steady decline that had started in 1688, but by 1760 (as a result of constant warfare) living standards had sunk below their 1688 levels. These developments are accompanied by observations that suggest that other indicators of living standard declined. The flat-lining of incomes is accompanied by substantial increases in the amount of time worked, rising mortality and rising infant mortality. In addition, comparisons of incomes with the American colonies confirm the results obtained with wages— Canada was considerably poorer. At the end, a long conclusion is provides an exploratory discussion of why Canada would have diverged early on. In structural terms, it is argued that the French colony was plagued by the problem of a small population which prohibited the existence of scale effects. In combination with the fact that it was dispersed throughout the territory, the small population of New France limited the scope for specialization and economies of scale. However, this problem was in part created, and in part aggravated, by institutional factors like seigneurial tenure. The colonial origins of French America’s divergence from the rest of North America are thus partly institutional

    The Seeds of Divergence: The Economy of French North America, 1688 to 1760

    Full text link

    Compositional effects of large graphene oxide sheets on the spinnability and properties of polyurethane composite fibers

    Full text link
    Recent advances in wearable electronics, technical textiles, and wearable strain sensing devices have resulted in extensive research on stretchable electrically conductive fibers. Addressing these areas require the development of efficient fiber processing methodologies that do not compromise the mechanical properties of the polymer (typically an elastomer) when nanomaterials are added as conductive fillers. It is highly desirable that the addition of conductive fillers provides not only electrical conductivity, but that these fillers also enhance the stiffness, strength, stretchability, and toughness of the polymer. Here, the compatibility of polyurethane (PU) and graphene oxide (GO) is utilized for the study of the properties of elastomeric conductive fibers prepared by wet-spinning. The GO-reinforced PU fibers demonstrate outstanding mechanical properties with a 200-fold and a threefold enhancement in Young\u27s modulus and toughness, respectively. Postspinning thermal annealing of the fibers results in electrically conductive fibers with a low percolation threshold (≈0.37 wt% GO). An investigation into optimized fiber\u27s electromechanical behavior reveals linear strain sensing abilities up to 70%. Results presented here provide practical insights on how to simultaneously maintain or improve electrical, mechanical, and electromechanical properties in conductive elastomer fibers

    High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles

    No full text
    The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young\u27s modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m -1) and exceptionally high specific surface area (2605 m2 g-1 before reduction and 2210 m2 g-1 after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g-1 at 1 A g-1) and rate capability (56 F g-1 at 100 A g-1) while maintaining their strong flexible nature

    High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles

    No full text
    The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young’s modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m<sup>–1</sup>) and exceptionally high specific surface area (2605 m<sup>2</sup> g<sup>–1</sup> before reduction and 2210 m<sup>2</sup> g<sup>–1</sup> after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g<sup>–1</sup> at 1 A g<sup>–1</sup>) and rate capability (56 F g<sup>–1</sup> at 100 A g<sup>–1</sup>) while maintaining their strong flexible nature
    corecore