4 research outputs found

    Experimental Testing of Quantum Mechanical Predictions of Mutagenicity: Aminopyrazoles

    No full text
    A computational method for predicting the likelihood of aromatic amines being active in the Ames test for mutagenicity was trialed on a set of aminopyrazoles. A virtual array of compounds was generated from the available sets of hydrazines and α-cyanoaldehydes (or ketones) and quantum mechanical calculations used to compute a probability of being active in the Ames test. The compounds selected for synthesis and testing were not based on the predictions and so spanned the range of predicted probabilities. The subsequently generated results of the Ames test were in good correspondence with the predictions and confirm this approach as a useful means of predicting likely mutagenic risk

    Identification, Optimization, and Pharmacology of Acylurea GHS-R1a Inverse Agonists

    No full text
    Ghrelin plays a major physiological role in the control of food intake, and inverse agonists of the ghrelin receptor (GHS-R1a) are widely considered to offer utility as antiobesity agents by lowering the set-point for hunger between meals. We identified an acylurea series of ghrelin modulators from high throughput screening and optimized binding affinity through structure–activity relationship studies. Furthermore, we identified specific substructural changes, which switched partial agonist activity to inverse agonist activity, and optimized physicochemical and DMPK properties to afford the non-CNS penetrant inverse agonist <b>22</b> (AZ-GHS-22) and the CNS penetrant inverse agonist <b>38</b> (AZ-GHS-38). Free feeding efficacy experiments showed that CNS exposure was necessary to obtain reduced food intake in mice, and it was demonstrated using GHS-R1a null and wild-type mice that this effect operates through a mechanism involving GHS-R1a
    corecore