44 research outputs found

    Factorial aerobic scope is independent of temperature and primarily modulated by heart rate in exercising Murray Cod (Maccullochella peelii peelii)

    Get PDF
    Several previous reports, often from studies utilising heavily instrumented animals, have indicated that for teleosts, the increase in cardiac output ( ) during exercise is mainly the result of an increase in cardiac stroke volume (VS) rather than in heart rate (fH). More recently, this contention has been questioned following studies on animals carrying less instrumentation, though the debate continues. In an attempt to shed more light on the situation, we examined the heart rates and oxygen consumption rates ( ; normalised to a mass of 1 kg, given as ) of six Murray cod (Maccullochella peelii peelii; kg) equipped with implanted fH and body temperature data loggers. Data were determined during exposure to varying temperatures and swimming speeds to encompass the majority of the biological scope of this species. An increase in body temperature (Tb) from 14°C to 29°C resulted in linear increases in (26.67-41.78 μmol min−1 kg−1) and fH (22.3-60.8 beats min−1) during routine exercise but a decrease in the oxygen pulse (the amount of oxygen extracted per heartbeat; 1.28-0.74 μmol beat−1 kg−1). During maximum exercise, the factorial increase in was calculated to be 3.7 at all temperatures and was the result of temperature-independent 2.2- and 1.7-fold increases in fH and oxygen pulse, respectively. The constant factorial increases in fH and oxygen pulse suggest that the cardiovascular variables of the Murray cod have temperature-independent maximum gains that contribute to maximal oxygen transport during exercise. At the expense of a larger factorial aerobic scope at an optimal temperature, as has been reported for species of salmon and trout, it is possible that the Murray cod has evolved a lower, but temperature-independent, factorial aerobic scope as an adaptation to the largely fluctuating and unpredictable thermal climate of southeastern Australia

    Cardiovascular responses to progressive hypoxia in ducks native to high altitude in the Andes

    Get PDF
    The cardiovascular system is critical for delivering O2 to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration. We calculated O2 pulse (the product of stroke volume and the arterial–venous O2 content difference), blood O2 concentration and heart rate variability. Regardless of altitude, all eight populations maintained O2 consumption rate with minimal change in heart rate or O2 pulse, indicating that O2 consumption was maintained by either a constant arterial–venous O2 content difference (an increase in the relative O2 extracted from arterial blood) or by a combination of changes in stroke volume and the arterial–venous O2 content difference. Three high-altitude taxa (yellow-billed pintails, cinnamon teal and speckled teal) had higher Hct and Hb concentration, increasing the O2 content of arterial blood, and potentially providing a greater reserve for enhancing O2 delivery during hypoxia. Hct and Hb concentration between low- and high-altitude populations of ruddy duck were similar, representing a potential adaptation to diving life. Heart rate variability was generally lower in high-altitude ducks, concurrent with similar or lower heart rates than low-altitude ducks, suggesting a reduction in vagal and sympathetic tone. These unique features of the Andean ducks differ from previous observations in both Andean geese and bar-headed geese, neither of which exhibit significant elevations in Hct or Hb concentration compared with their low-altitude relatives, revealing yet another avian strategy for coping with high altitude

    Does hyperthermia constrain flight duration in a short-distance migrant?

    Get PDF
    While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day(−1)) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h(−1). Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’

    Do lizards breathe through their mouths while running?

    No full text

    Pregnancy limits lung function during exercise and depresses metabolic rate in the skink Tiliqua nigrolutea

    No full text
    High gestational loads have been associated with a range of ecological costs, such as decreased locomotor ability; however, the physiological mechanisms that underpin these changes are poorly understood. In this study, breathing patterns, metabolic rates, lung volume and lung diffusing capacity were measured at rest and during exercise in the pregnant skink Tiliqua nigrolutea. Breathing patterns were largely unaffected by gestation; however, decreases in metabolic rate (rate of oxygen consumption) in the late stages of pregnancy induced a relative hyperventilation. The reductions in metabolic rate during late pregnancy prevent the calculation of the maintenance cost of pregnancy based on post-partum and neonatal metabolic rates. Despite the high relative litter mass of 38.9±5.3%, lung diffusing capacity was maintained during all stages of pregnancy, suggesting that alterations in diffusion at the alveolar capillary membrane were not responsible for the relative hyperventilation. Lung volume was increased during pregnancy compared with non-pregnant females, but lung volume was significantly lower during pregnancy compared with post-partum lung volume. Pregnant females were unable to produce the same metabolic and ventilatory changes induced by exercise in non-pregnant females. This lack of ability to respond to increased respiratory drive during exercise may underpin the locomotor impairment measured during gestation in previous studies

    The accessory role of the diaphragmaticus muscle in lung ventilation in the estuarine crocodile Crocodylus porosus

    Get PDF
    Crocodilians use a combination of three muscular mechanisms to effect lung ventilation: the intercostal muscles producing thoracic movement, the abdominal muscles producing pelvic rotation and gastralial translation, and the diaphragmaticus muscle producing visceral displacement. Earlier studies suggested that the diaphragmaticus is a primary muscle of inspiration in crocodilians, but direct measurements of the diaphragmatic contribution to lung ventilation and gas exchange have not been made to date. In this study, ventilation, metabolic rate and arterial blood gases were measured from juvenile estuarine crocodiles under three conditions: (i) while resting at 30°C and 20°C; (ii) while breathing hypercapnic gases; and (iii) during immediate recovery from treadmill exercise. The relative contribution of the diaphragmaticus was then determined by obtaining measurements before and after transection of the muscle. The diaphragmaticus was found to make only a limited contribution to lung ventilation while crocodiles were resting at 30°C and 20°C, and during increased respiratory drive induced by hypercapnic gas. However, the diaphragmaticus muscle was found to play a significant role in facilitating a higher rate of inspiratory airflow in response to exercise. Transection of the diaphragmaticus decreased the exercise-induced increase in the rate of inspiration (with no compensatory increases in the duration of inspiration), thus compromising the exercise-induced increases in tidal volume and minute ventilation. These results suggest that, in C. porosus, costal ventilation alone is able to support metabolic demands at rest, and the diaphragmaticus is largely an accessory muscle used at times of elevated metabolic demand

    The ventilatory response to hypoxia and hypercapnia is absent in the neonatal fat-tailed dunnart

    No full text
    At birth, the newborn fat-tailed dunnart relies on cutaneous gas exchange to meet metabolic demands, with continuous lung ventilation emerging several days later. We hypothesised that the delayed expression of lung ventilation (V-E) in these animals is in part due to a low responsiveness of the respiratory control system to blood gas perturbations. To address this hypothesis, we assessed the ventilatory and metabolic response to hypoxia (10% Oâ‚‚) and hypercapnia (5% COâ‚‚) using closed-system respirometry from birth to 23 days postpartum (P). Neonatal fat-tailed dunnarts displayed no significant hypoxic or hypercapnic ventilatory responses at any age. Regardless, significant hyperventilation through a suppression of metabolic rate (VOâ‚‚) was observed at birth in response to hypercapnia and in response to hypoxia at all ages, except P12. Therefore, reliance on cutaneous gas exchange during early life may be partially attributed to reduced chemosensitivity or a lack of central integration of chemosensitive afferent information. This may be in part due to the relative immaturity of this species at birth, compared with other mammals.6 page(s

    Central nitric oxide synthase inhibition restores behaviourally mediated lipopolysaccharide-induced fever in near-term rats

    No full text
    It has recently been established that the febrile response to bacterial endotoxin attenuated late in pregnancy is partially restored by central inhibition of nitric oxide synthase (NOS). To determine if this restoration of the febrile response also extends to warm-seeking behavior, we used a thermocline to allow animals to select their preferred ambient temperature. Near-term pregnant (day 19–20) and aged matched non-pregnant rats were given an I.P. injection of lipopolysaccharide (LPS, 50 μg/kg) and an intracerebroventricular (I.C.V.) injection of an inhibitor of NOS, NG-monomethyl-L-arginine acetate salt (L-NMMA, 100 μg) or vehicle. Core body temperature and self-selected ambient temperature were measured for 6 h after injection. Inhibition of brain NOS before LPS injection resulted in a significant febrile response with an associated increase in selected ambient temperature in both near-term and non-pregnant animals. As expected, near-term dams that received I.C.V. vehicle+I.P. LPS did not have a febrile response but displayed a small hypothermic reaction with no change in selected ambient temperature. We conclude that blockade of brain NOS restores maternal hyperthermic and warm-seeking responses to LPS in near-term pregnancy
    corecore