ResearchOnline@JCU

This is the **Accepted Version** of a paper published in the journal: Journal of Experimental Biology

Munns, Suzanne L., Owerkowics, Tomasz, Andrewartha, Sarah J., and Frappell,
 Peter B. (2012) *The accessory role of the diaphragmaticus muscle in lung ventilation in the estuarine crocodile Crocodylus porosus*. Journal of
 Experimental Biology, 215. pp. 845-852.

http://jeb.biologists.org/content/215/5/845.long

1	
2	The accessory role of the diaphragmaticus muscle in lung
3	ventilation in the estuarine crocodile Crocodylus porosus
4	
5	Suzanne L. Munns ^{*1} , Tomasz Owerkowicz ² , Sarah J. Andrewartha ³ , and Peter B.
6	Frappell ⁴ .
7	
8	¹ School of Veterinary and Biomedical Sciences, James Cook University,
9	Townsville, QLD, 4811, Australia, ² Department of Biology, California State
10	University, San Bernardino, CA 92407, U.S.A. ³ Department of Biological
11	Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX,
12	76203, U.S.A., ⁴ School of Zoology, University of Tasmania, Hobart, Tas, 7005,
13	Australia,
14	email:suzy.munns@jcu.edu.au
15	
16	Short Title: Diaphragmaticus as accessory muscle of inspiration in crocodiles
17	Keywords: ventilation, breathing pattern, oxygen consumption, blood gases,
18	exercise, hypercapnia, crocodilian.
19	
20	

21 Abstract

23	Crocodilians use a combination of three muscular mechanisms to effect lung
24	ventilation: the intercostal muscles producing thoracic movement, the abdominal
25	muscles producing pelvic rotation and gastralial translation, and the
26	diaphragmaticus muscle producing visceral displacement. Earlier studies suggested
27	that the diaphragmaticus is a primary muscle of inspiration in crocodilians, but
28	direct measurements of the diaphragmatic contribution to lung ventilation and gas
29	exchange have not been made to date. In this study, ventilation, metabolic rate and
30	arterial blood gases were measured from juvenile estuarine crocodiles under three
31	conditions: (i) while resting at 30°C and 20°C; (ii) while breathing hypercapnic
32	gases; and (iii) during immediate recovery from treadmill exercise. The relative
33	contribution of the diaphragmaticus was then determined by obtaining
34	measurements before and after transection of the muscle. The diaphragmaticus was
35	found to make only a limited contribution to lung ventilation while crocodiles were
36	resting at 30°C and 20°C, and during increased respiratory drive induced by
37	hypercapnic gas. However, the diaphragmaticus muscle was found to play a
38	significant role in facilitating a higher rate of inspiratory airflow in response to
39	exercise. Transection of the diaphragmaticus decreased the exercise-induced
40	increase in the rate of inspiration (with no compensatory increases in the duration
41	of inspiration), thus compromising the exercise induced increases in tidal volume
42	and minute ventilation. These results suggest that, in C. porosus, costal ventilation

- 43 alone is able to support metabolic demands at rest, and the diaphragmaticus is
- 44 largely an accessory muscle used at times of elevated metabolic demand.
- 45
- 46

47 Introduction

49	Crocodilians generate subatmospheric pulmonary pressures to inflate their lungs.
50	Unlike mammals, in which the diaphragm plays a central role, crocodilians lack a
51	muscular structure homologous or analogous to the mammalian diaphragm and a
52	combination of three other muscular mechanisms power ventilation; namely, the
53	intercostal, abdominal and diaphragmaticus muscles.
54	Intercostal muscles are active during both inspiration and expiration (Gans and
55	Clark, 1976). Inspiration is driven by cranial rotation of tripartite ribs which
56	increases thoracic volume, whereas caudal and medial rotation of the ribs decreases
57	thoracic volume during expiration (Claessens, 2009). The abdominal muscles act
58	to alter abdominal volume either by displacing the liver cranially during expiration
59	or by providing room for the caudal displacement of the liver during inspiration.
60	The rectus abdominis and transversus abdominis muscles are active during
61	inspiration and expiration (Gans and Clark, 1976; Naifeh et al., 1970), particularly
62	during exercise (Farmer and Carrier, 2000a). The rectus abdominis muscle (and
63	possibly the transversus abdominis) also rotate the pubic bones in the craniodorsal
64	direction and contribute to decreasing abdominal volume during expiration (Farmer
65	and Carrier, 2000a). The ischiopubis and ischiotruncus muscles act to increase
66	abdominal volume during inspiration by rotating the pubic bones ventrally (Farmer
67	and Carrier, 2000a).

69	The diaphragmaticus muscle of crocodilians is not homologous to the mammalian
70	diaphragm (Gans, 1970, Klein and Owerkowicz, 2006) and its main function may
71	have been non-respiratory (Uriona and Farmer, 2008) as crocodilian ancestors
72	became secondarily adapted to life in water (Seymour et al., 2004). The
73	diaphragmaticus has been well described in caiman and alligator (Boelaert, 1942;
74	Claessens, 2009; Farmer and Carrier, 2000a; Gans and Clark, 1976; Naifeh et al.,
75	1970; Uriona and Farmer, 2006). In alligators, the two paired strap-like muscles
76	originate on the ischia and on the last gastralia and insert onto a connective tissue
77	sheath that surrounds the liver (Farmer and Carrier, 2000a). In caiman (Gans and
78	Clark, 1976) and crocodiles (Munns, pers. obs.), the origin of the diaphragmaticus
79	muscle differs slightly from that in alligators and encompasses the ischia and the
80	pubis. Contraction of the diaphragmaticus muscle pulls the liver caudally,
81	increasing thoracic volume and facilitating inspiration (Farmer and Carrier, 2000a;
82	Gans, 1971; Gans and Clark, 1976; Naifeh et al., 1970). The caudocranial
83	translation of the liver during the ventilatory cycle has been likened to a piston, and
84	hence the term 'hepatic piston pump' has been coined to describe the mechanism
85	powered by the diaphragmaticus muscle (Gans and Clark, 1976). The hepatic
86	piston pumping has been shown to effectively decouple terrestrial locomotor
87	mechanics from breathing mechanics in the American alligator (Farmer and
88	Carrier, 2000b), and thus may provide an functional advantage during exercise
89	compared to costal ventilation alone.
90	Previous studies have shown that lung ventilation in crocodilians can be effected by
91	various combinations of muscular mechanisms. In submerged caiman, lung

92	ventilation was achieved solely by use of the hepatic piston pump (Gans and Clark,
93	1976) with costal muscle activity being neither regular or obligatory (Gans, 1971).
94	In juvenile alligators on land, lung ventilation was achieved by a combination of
95	both costal and hepatic piston mechanisms (Farmer and Carrier, 2000a). These
96	studies suggest that the diaphragmaticus muscle plays a primary role in inspiration.
97	This argument is further supported by recent videoradiographic measurements of
98	lung volume in resting alligators (Claessens, 2009), where the diaphragmatic
99	contribution to lung inflation has been determined to range from 36-61% of
100	inspired tidal volume.
101	
102	That the diaphragmaticus muscle is not absolutely necessary for effective lung
103	ventilation at rest has been demonstrated in hatchling and juvenile alligators with a
104	surgically transected diaphragmaticus (Hartzler et al., 2004; Uriona and Farmer,
105	2006). The loss of diaphragmatic function was found to result in significant
106	reductions in maximal inspiratory flow rate, but whether this adversely affected
107	respiratory gas exchange was not quantified.
108	
109	The goal of our study is to determine the inspiratory importance of the
110	diaphragmatic muscle in juveniles of the estuarine crocodile (Crocodylus porosus
111	Schneider 1801). Extant crocodilians genera show differences in their habitat and
112	activity preferences (Webb et al., 1993), thus the relative contribution of the
113	diaphragmaticus muscle to lung ventilation may vary between groups. So far,
114	however, only Alligator and Caiman have been studied from this perspective. In

115	contrast to previous studies at a single temperature and at rest, we measured the
116	contribution of the diaphragmaticus muscle to lung ventilation, and its effect on gas
117	exchange, in crocodiles under altered respiratory demand associated with decreased
118	body temperature, recovery from forced exercise, and hypercapnia.
119	
120	Materials and Methods
121	Animals
122	Five estuarine crocodiles (Crocodylus porosus Schneider 1801) of indeterminate
123	sex were obtained from the Koorana Crocodile Farm, Rockhampton, Australia, and
124	kept in aquaria with a thermal gradient (27-33°C), full spectrum lighting
125	(14L:10D), free access to water and were fed a diet of whole rodents, fish, and
126	chicken pieces. Body weight ranged from 0.60 to 1.42 kg (mean \pm s.e.m., 0.98 \pm
127	0.19 kg).
128	
129	Surgical procedure
130	Crocodiles were anaesthetised with halothane (Veterinary Companies of Australia,
131	Artarmon, NSW, Australia), intubated and artificially ventilated (Model 661,
132	Harvard Apparatus, Millis, Massachusetts, USA) with room air that had been
133	passed through a vapourizer (Fluotec 3, Cyprane Limited, Keighley, Yorkshire,
134	England). The vapourizer was initially set at 4-5% for induction of anaesthesia,
135	and was then reduced to 1-2% for surgical maintenance. Incision was made in the
136	skin and cervical muscles were carefully blunt-dissected to expose the underlying
137	carotid artery. The carotid artery was cannulated with heparinised polyethylene

138 tubing (I.D. 0.023, O.D. 0.038mm Microtube Extrusions, North Rocks, NSW, 139 Australia) and the tubing looped once prior to exiting the wound where it was 140 secured to the skin using two sutures. Incision site was closed with silk sutures. 141 EMG electrodes (0.05mm diameter copper wire) were inserted bilaterally (and 142 perpendicular to muscle fiber orientation) into the diaphragmaticus muscle via a 3-143 4cm midline abdominal incision. A copper ground electrode (with frayed ends) 144 was also placed in the abdominal cavity. Leads from the electrodes were 145 subcutaneously tunneled to a dorsal exit just caudal to the hind limb. All incisions 146 were closed with interrupted sutures and treated with cyanoacrylate tissue adhesive 147 (Vetbond, 3M, St Paul, MN, USA). The cannula and lead wires were coiled and 148 taped to the back of the animal. Artificial ventilation with room air was continued 149 until the crocodile regained consciousness and initiated spontaneous breathing. 150 Intramuscular injections of the antibiotic Duplocillin (Intervet Australia, Bendigo 151 East, Victoria, Australia), and the analgesic Temgesic (Buprenophine, Reckitt 152 Benckiser, West Ryde, NSW, Australia) were given at the conclusion of surgery. 153 Duplocillin injections were repeated every second day after surgery. A minimum 154 recovery period of two days was allowed before experiments commenced. 155

156 <u>Transection of the diaphragmaticus muscle</u>

After the first set of experiments, crocodiles were anaesthetised for a second time as described above. The diaphragmaticus muscle was exposed via the previous incision site, and transected by surgically severing the muscle bellies from their origin on the pubis and the ischia. After the incision was closed and animals

161	recovered as described above. Complete transection of the diaphragmaticus muscle
162	was confirmed for each animal by post mortem examination at the end of the study.

164 <u>Lung Ventilation and gas exchange</u>

165 Ventilation was measured using a mask constructed from the base of a 20ml 166 centrifuge tube, fitted with a plastic Y connector to which flexible tubing was 167 attached. The mask was placed over the snout of the crocodile, covering the 168 nostrils and the mouth and sealed to the body with a dental polyether impression 169 material (Impregum F, Henry Schein Halas, Brisbane, QLD, Australia). A pump 170 (Reciprotor AB, Sweden) pushed fresh room air through the mask at a constant 171 flow rate of 0.8-1.2 L.min⁻¹, depending on the size of the crocodile, controlled with 172 a mass flowmeter (Sierra Instruments, Monterey, CA, USA). Care was taken to 173 ensure that the flow rate though the mask exceeded the rate of inspiration, in order 174 to prevent rebreathing. Alterations in airflow due to ventilation were measured 175 using a pneumotachograph (MLT10L Respiratory Flow Head, AD Instruments, 176 Bella Vista, NSW, Australia) placed downstream of the mask, such that expirations 177 caused an decrease in airflow and inspiration caused a increase in airflow. Pressure 178 gradients induced by alterations in airflow across the pneumotachograph were monitored using a differential pressure transducer connected to a carrier 179 180 demodulator (MP-45-1 and CD15, respectively; Validyne, Northridge, CA, USA). 181 The signal from the differential pressure transducer was calibrated by injecting and 182 withdrawing known volumes of gas from the sealed mask and was integrated to 183 obtain tidal volumes. Gas exiting the mask was sub-sampled, passed through the

185	analysed for fractional concentrations of O_2 (Fo ₂) and CO ₂ (Fco ₂) (ML206 gas
186	analyser, AD Instruments, Bella Vista, NSW, Australia). The rates of oxygen
187	consumption (\dot{V}_{O_2}) and carbon dioxide production (\dot{V}_{CO_2}) were determined as
188	previously described by (Frappell et al., 1992). Briefly,
189	$\dot{V}_{O_2} = \text{flow} \times (F O_2 - F O_2) / (1 - F O_2)$
190	where the subscripts I and E represent incurrent and excurrent gas, respectively, and
191	the superscript $$ (prime) represents dry CO ₂ -free gas. CO ₂ was mathematically
192	scrubbed using $F_0^2 = Fo_2 / (1 - Fco_2)$.
193	$\dot{V}_{CO_2} = \text{flow} \times (F ECO_2 - F ICO_2) / (1 - F ICO_2)$
194	where prime ` represents dry O_2 -free gas. Metabolic gas values are reported at
195	STPD (standard temperature and pressure, dry).
196	
197	Breathing patterns were analysed in terms of tidal volume (V _T), breathing
198	frequency (f), minute ventilation ($\dot{V}_E = V_T x f$), inspiratory and expiratory durations
199	(T_I and T_E), the duration of the non ventilatory period (T_{NVP}), rate of inspiratory
200	airflow (V _{TI} /T _I), air convection requirements for O ₂ (ACR O ₂ = $\dot{V}_E / \dot{V}_{O_2}$) and CO ₂
201	(ACR CO ₂ = $\dot{V}_E / \dot{V}_{CO_2}$) and respiratory exchange ratio (RER = $\dot{V}_{CO_2} / \dot{V}_{O_2}$). For
202	each test condition, an average of 40 consecutive breaths were analysed and
203	ventilatory volumes are reported at BTPS (body temperature and barometric
204	pressure, saturated).

desiccant anhydrous calcium sulfate (Drierite, Hammond, Xenia, OH, USA) and

206 <u>Blood gases</u>

207	The arterial blood partial pressures of O_2 (PaO ₂) and CO ₂ (PaCO ₂) and pH were measured
208	with BMS 3 Mk 2 and PHM 73 (Radiometer, Denmark), respectively, at the appropriate
209	test temperature (20°C or 30°C) via small blood samples (250-300µL) taken from the
210	arterial cannula and stored anaerobically on ice. The electrodes were calibrated before
211	and after each measurement. PaO_2 and $PaCO_2$ were measured every 30 s over 3 min and
212	regressed back to time zero to account for drift and/or O ₂ consumption by the electrode;
213	pH was measured in incremental volumes of blood until the variation between successive
214	measurements was less than 0.005 units. The arterial oxygen content, CaO ₂ , of each
215	blood sample was determined on a $10\mu L$ subsample of blood using a galvanic cell
216	(Oxygen Content Analyser, OxyCon, University of Tasmania, Australia). Lactate
217	concentration was determined by an Accusport analyser (Boehringer Mannheim,
218	Mannheim, Germany) and haemoglobin concentration by the HemoCue analyser
219	(HemoCue AB, Ängelholm, Sweden). Note that neither analyser had been validated for
220	use with reptile blood.
221	
222	Electromyography

223 Electromyographic signals were amplified and recorded using a Powerlab data

224 acquisition system (Model 8/30, AD Instruments, Bella Vista, NSW, Australia) and

analyzed using Powerlab Chart Pro software (AD Instruments, Bella Vista, NSW,

Australia).

228 Experimental protocol

229 Crocodiles were fasted for 7 days prior to surgery (to ensure a post absorptive state) 230 and were held at the 30°C for 2-3 days prior to experimentation (to ensure stable 231 respiratory and metabolic parameters). At the time of the experiment the body 232 temperature of the crocodiles was monitored via a thermocouple inserted ~ 5cm 233 into the cloaca (temperature pod, AD Instruments, Bella Vista, NSW, Australia). A 234 mask was fitted, the cannula and lead wires connected and the crocodile was placed 235 on a treadmill belt. The crocodile was left on the stationary treadmill belt for at 236 least one hour to obtain resting measurements for all variables at 30°C (the effects of handling and instrumentation have previously been shown to be non significant 237 238 after 60 mins) (Munns, 2000). Reductions in respiratory drive were induced by 239 lowering body temperature. The room temperature was slowly reduced over 2-3 240 hours until the crocodile's body temperature reached 20°C. Ventilation, metabolic 241 rate and blood gases were measured again, once the crocodile's body temperature 242 had stabilized at 20°C for a minimum of 60 mins. The room temperature was then 243 slowly returned to 30°C and the crocodile's body temperature restabilized at 30°C 244 for at least 60 mins. Increases in centrally mediated respiratory drive were induced 245 by short bouts of moderate intensity exercise or administration of hypercaphic gas 246 (5% CO₂). After a minimum period of one hour at 30°C, the crocodile was 247 exercised on the treadmill. The exercise period consisted of a two-minute exercise bout at 1.0 km.hr⁻¹. Locomotion was initiated by gently tapping the treadmill belt 248 249 behind the crocodile or by lightly touching the crocodile's tail. Following exercise, 250 crocodiles were allowed to rest on the treadmill for a minimum of one hour (until

251	ventilation, blood gases and lactate concentrations had returned to pre-exercise
252	values) and then exposed to 5% CO_2 for 10 minutes. The above experimental
253	protocol was then repeated no less than 48hrs after the diaphragmaticus muscle was
254	inactivated.
255	
256	Data collection, analysis and statistics
257	All signals were collected on a computer at 1 kHz using Chart data acquisition
258	software (AD Instruments, Bella Vista, NSW, Australia). Due to the intermittent
259	and variable nature of reptilian ventilation and the low breathing frequencies
260	employed at rest, ventilatory variables were calculated from the last 10 min of the
261	rest periods. To avoid locomotor interference on recorded signals (e.g., ventilation,
262	EMG signals), calculations were made from the first 25 breaths immediately
263	following exercise.
264	
265	The effect of severing the diaphragmaticus muscle on all parameters was
266	determined using paired Dunnett's test (30°C resting as the control, P<0.05) and
267	paired t-tests (P<0.05). All data presented are mean \pm s.e.m.
268	
269	Results
270	Rest at 30°C
271	
272	Crocodiles resting at 30°C displayed a typical crocodilian breathing pattern which
273	consisted of one or two consecutive breaths interspersed with long pauses (Fig 1A),

274
$$\dot{V}_{E}$$
 (27.61±4.03mL.kg⁻¹min⁻¹), V_{T} (15.56±3.27mL.kg⁻¹), f (1.98±0.48 min⁻¹), $\dot{V}_{O_{2}}$

 $(0.83\pm0.24 \text{ mL.kg}^{-1}\text{min}^{-1})$, \dot{V}_{CO_2} (0.70±0.19 mL.kg $^{-1}\text{min}^{-1}$), ACR O₂ (47.00±21.06), 275 276 ACR CO₂ (52.99±22.17) and RER (0.87±0.04) (Figs 2-5). EMG activity from the 277 diaphragmaticus muscle was typically associated with ventilation when crocodiles 278 were quietly resting at 30°C (Fig 1). 279 280 At this temperature, transection of the diaphragmaticus muscle did not induce any 281 significant alterations in the ventilatory, respiratory or blood gas variables (Figs 6-282 7, Table 1). 283 284 Rest at 20°C 285 286 A lower body temperature (T_B) altered the breathing pattern by increasing Tnvp

and T_I (Fig 2). Decreases in \dot{V}_{O_2} , \dot{V}_{CO_2} (Fig 4) and VT_I/T_I also accompanied a

288 decrease in T_B. Diaphragmatic EMG activity was not always evident during

289 inspiration, but when EMG activity was present, it was associated with inspiratory

290 flow (Fig 1B). At 20°C, transection of the diaphragmaticus muscle induced a

- 291 significant increase in V_T, with no change in any other ventilatory, respiratory or
- blood gas parameter (Table 1).

293

294 <u>Post-exercise recovery at 30°C</u>

295	During the immediate recovery from treadmill exercise, minute ventilation (\dot{V}_E)
296	increased 9 fold (Fig 4), tidal volume (V_T) 2.7-fold (Fig 2), breathing frequency (f)
297	3.3-fold (Fig 3), rate of oxygen consumption (\dot{V}_{O_2}) 2.5-fold (Fig 4) and rate of
298	carbon dioxide production (\dot{V}_{CO_2}) 5.8-fold (Fig. 4), while blood lactate
299	concentration rose 5.6-fold from 0.77 ± 0.43 mmol.L ⁻¹ to 4.27 ± 0.95 mmol.L ⁻¹ (Fig 7).
300	The increase in V_T was achieved via both a 1.9-fold increase in the rate of
301	inspiratory flow (VT_I/T_I) and a 1.6-fold increase in inspiratory time $(T_I, Fig 2)$.
302	While PaO ₂ remained unaltered by exercise, PaCO ₂ significantly decreased (Fig 6).
303	
304	All animals completed the exercise period both before and after inactivation of the
305	diaphragmaticus muscle. Exercise in crocodiles with an inactivated
306	diaphragmaticus muscle resulted in a reduction in the exercise induced elevation in
307	VT_{I}/T_{I} , resulting in lower V_{T} (Fig 2) and \dot{V}_{E} (Fig 4) compared to the same
308	crocodiles with intact diaphragmaticus muscles. \dot{V}_{O_2} and \dot{V}_{CO_2} were not
309	significantly elevated in crocodiles with inactivated diaphragmaticus muscles (Fig
310	4), and no significant alterations in blood gases were measured (Fig 6-7).
311	
312	Hypercapnia at 30°C
313	
314	At rest, inhalation of normoxic air with 5% CO ₂ increased \dot{V}_E 1.5-fold (Fig 4) via

315 1.5-fold increase in $T_{\rm I}$ and a 2.2-fold increase in $V_{\rm T}$ (Fig.2). There were no

316	significant alterations in T_{NVP} or $f(Fig 3)$ or any other ventilatory parameter (Fig
317	5). EMG activity from the diaphragmaticus muscle was present during hypercapnic
318	exposure, however not all ventilations were associated with diaphragmaticus
319	activity (Fig 1). Transection of the diaphragmaticus muscle did not significantly
320	alter any ventilatory parameter during hypercapnic exposure (Table 1).
321	
322	Discussion
323	Inactivation of the diaphragmaticus muscle in juvenile Crocodylus porosus did not induce
324	any significant alterations in ventilation, gas exchange or arterial blood gases at 30°C,
325	20°C or following inhalation of 5% CO_2 (Table 1). Loss of diaphragmatic function
326	disabled the hepatic piston pump, thus aspiration could only be achieved via alterations in
327	intercostal or abdominal muscle activities. The resting breathing patterns of crocodiles in
328	this study at both 20°C and 30°C, and in response to hypercapnia, were similar, both
329	before and after surgery, to those previously measured on juvenile alligators and
330	crocodiles under similar conditions (Farmer and Carrier, 2000c; Hartzler et al., 2006a;
331	Munns et al., 1998; Munns et al., 2005). This suggests that the surgical intervention did
332	not adversely alter the animals' breathing patterns and the consistency of ventilatory and
333	metabolic data both before and after surgery precluded the need for sham operated
334	controls.
335	
336	Our results suggest that activity of the inspiratory muscles (such as the intercostals,
337	trapezius, anterior serratus and derived hypobranchial muscles of the neck) is able to
338	maintain ventilation, thus maintaining arterial oxygenation to support metabolic rate in

the absence of a functional hepatic piston pump. As such, they support the argument that
the diaphragmaticus muscle is an accessory, not primary, muscle of inspiration in
crocodiles.

342 Variation in respiratory muscle activity of the diaphragmaticus appears to exist based on 343 the physical environment and physiological condition of the crocodilians. It may vary in 344 animals on land versus in water, at rest versus undergoing exercise. Earlier studies 345 reported that intercostal muscle activity was not regular or obligatory during ventilation 346 in submerged caiman (Gans, 1971; Gans and Clark, 1976), whereas others reported that 347 lung ventilation can be effected solely by the use of the intercostal musculature in 348 juvenile alligators on land (Hartzler et al., 2004; Uriona and Farmer, 2006). Uriona and 349 Farmer (2006) also demonstrated that transection of the diaphragmaticus muscle did not 350 alter the maximum inspiratory volume, expired volume, inspiratory or expiratory times. 351 The same authors also propose that the diaphragmaticus muscle may have a limited 352 contribution to ventilation in fasted, standing alligators. The differential role of the 353 diaphragmatic activity in an aquatic versus terrestrial environment has been highlighted 354 by Uriona and Farmer's (2008) findings that the diaphragmaticus is recruited in alligators 355 to control buoyancy and pitch during diving (Uriona and Farmer, 2008).

356

Some of the variation reported in activity of the diaphragmaticus and intercostal muscles may be due to the use of different sized animals in the various studies. Relatively large (up to 7.5kg) submerged caimans were used in studies that reported low EMG activity of the intercostals and a high reliance on the diaphragmaticus muscle for inspiration (Gans, 1971; Gans and Clark, 1976). Videoradiographic studies in juvenile alligators (mass 0.72-

362	2.09kg) estimated that 36-61% of tidal volume was attributable to diaphragmaticus
363	activity and approximately 40% attributable to costosternal activity (Claessens, 2009),
364	though it should be noted that these estimates were calculated for tidal volumes 2-4 fold
365	larger than those measured at rest in this study. While the diaphragmaticus muscle is
366	well developed in adults, it is thin and translucent in juvenile crocodilians (pers. obs.).
367	Future investigations are needed to examine if the contribution of the diaphragmaticus
368	muscle to ventilation increases with age in crocodilians and whether any age related
369	increase in diaphragmaticus muscle recruitment is related to hypertrophy of the muscle or
370	to alterations in chest wall compliance.
371	
372	Post exercise recovery caused significant alterations in ventilatory and respiratory
373	parameters (\dot{V}_E , V_T , f , V_{T_I}/T_I , \dot{T}_I , \dot{V}_{O_2} , \dot{V}_{CO_2} , Figs 2-5) and arterial lactate (Fig 7) in
374	crocodiles with an intact diaphragmaticus muscle. The changes in ventilation and
375	metabolic rates were not as extensive as those previously reported in exercising juvenile
376	alligators (Farmer and Carrier, 2000b; Munns et al., 2005). The discrepancy of our results
377	with those of earlier reports, however, is not surprising given differences in species used
378	(Crocodylus versus Alligator), experimental protocol (2-min period versus exhaustive
379	exercise), and acclimation to treadmill (none versus extensive). The aim of this
380	experiment was not to achieve maximum treadmill performance but rather to test if
381	adequate ventilation was maintained during elevated respiratory drive in the absence of a
382	functional hepatic piston pump.

384 Transection of the diaphragmaticus resulted in a reduced capacity for exercise recovery to 385 elevate VT_I/T_I (Fig 2), thus limiting the elevations in V_T (-19%) and \dot{V}_E (-39%, Fig 4), 386 compared to the same crocodiles with an intact diaphragmaticus. Interestingly, post 387 exercise-induced elevations in V_T were achieved via increases in both VT_I/T_I and T_I , 388 whereas hypercapnia-induced increases in V_T of similar magnitude were supported solely 389 by increases in T_I . Increases in T_I reflect a delay in the centrally integrated inspiratory 390 "off-switch" (Munns et al., 1998) and as such are unlikely to be altered by the transection 391 of the diaphragmaticus muscle. However, increases in VT_I/T_I likely reflect an increase in 392 respiratory muscle recruitment, thus increasing the rate of inspiratory airflow. Effective 393 recruitment of the diaphragmaticus muscle to increase inspiratory airflow rates was 394 prevented in crocodiles with inactivated hepatic piston pumps, and thus V_T and \dot{V}_E were 395 compromised during the recovery from exercise. VT_I/T_I was also impaired following 396 transection of the diaphragmaticus muscle in juvenile postprandial alligators (Uriona and 397 Farmer, 2008), thus the proposed role of the diaphragmaticus muscle in increasing 398 inspiratory airflow rates appears to include not only exercising but also digesting 399 crocodilians.

400

401 Under laboratory conditions, exercise in crocodilians is predominantly anaerobic; arterial
402 lactate concentrations increased by 5.6-fold after moderate activity in this study (Fig 7)
403 and by 16-fold following exhaustive exercise in alligators (Hartzler et al., 2006b). While
404 respiratory parameters tend to increase with treadmill speed, cardiovascular responses
405 appear to be "all or nothing" with maximal increases in heart rate, central venous
406 pressure, arterial blood pressure and venous return reached early in the exercise period,

407	and no further elevations triggered by increasing treadmill speed (Munns et al., 2005).
408	Exercise in crocodilians is also associated with a marked relative hyperventilation
409	(Farmer and Carrier, 2000b; Farmer and Carrier, 2000c; Hartzler et al., 2006b) which was
410	evident in this study by the increased ACR O_2 (Fig 5) and the decrease in PaCO ₂ (Fig 6).
411	Exercising crocodiles rely on anaerobic metabolism which results in a low demand for
412	O ₂ . At the same time, a relative hyperventilation occurs during exercise and results in a
413	high O_2 supply. The combination anaerobic metabolism (thus low O_2 demand) and
414	relative hyperventilation (thus high O2 supply) may limit the impact of the VT and \dot{V}_E
415	constraints induced by transection of the diaphragmaticus muscle during exercise. Future
416	studies involving a greater range of treadmill speeds and exercise durations would be
417	required to more completely assess the contribution of the diaphragmaticus muscle (and
418	hence the hepatic piston pump) to exercise endurance.
419	
420	In conclusion, the contribution of the hepatic piston pump and costal ventilation, the two

11 .

•

1 .11

1 /1 /

1 2005

107

1

421 primary ventilatory mechanisms in crocodilians, appears to be highly plastic. In C. 422 porosus, the diaphragmaticus muscle appears to make only limited contributions to 423 maintaining ventilation, metabolic rate and arterial oxygenation at rest (both at preferred 424 and lowered body temperatures) and during increased respiratory drive induced by 425 hypercapnia. Tidal volume elevations produced by increasing the duration of inspiration 426 (as induced by hypercapnia) are not affected by inactivation of the diaphragmaticus 427 muscle. However, the diaphragmaticus muscle makes a significant contribution to 428 ventilation during the recovery from exercise, facilitating increases in inspiratory airflow

429	rates, and thus improving the increases in tidal volume and minute ventilation that would
430	otherwise be obtained.
431	
432	
433	Acknowledgements
434	We are grateful to Tobie Cousipetcos and Eva Suric for assistance with crocodile care.
435	

436 Literature Cited

437	Boelaert, R. (1942). Sur la physiologie de la respiration de l'Alligator
438	mississipiensis. Arch. Int. Physiol 52, 57-72.
439	Claessens, L. (2009). A cineradiographic study of lung ventilation in Alligator
440	mississippiensis. J. Exp. Zool. 311A, 563-585.
441	Farmer, C. G. and Carrier, D. R. (2000a). Pelvic aspiration in the American
442	alligator (Alligator mississippiensis). J. Exp. Biol. 203, 1679-1687.
443	Farmer, C. G. and Carrier, D. R. (2000b). Ventilation and gas exchange during
444	treadmill locomotion in the American alligator (Alligator mississippiensis). J. Exp. Biol.
445	203 , 1671-1678.
446	Farmer, C. G. and Carrier, D. R. (2000c). Respiration and gas exchange during
447	recovery from exercise in the American alligator. Resp Physiol 120, 81-87.
448	Frappell, P., Lanthier, C., Baudinette, R. and Mortola, J. (1992). Metabolism
449	and ventilation in acute hypoxia: a comparative analysis in small mammalian species.
450	<i>Am. J. Physiol.</i> 262 , R1040-R1046.
451	Gans, C. (1971). Respiration in early tetrapods - the frog is a red herring.
452	Evolution 24 , 740-751.
453	Gans, C. and Clark, B. (1976). Studies on ventilation of Caiman crocodylus
454	(Crocodilia: Reptilia). Respiration Physiology 26, 285-301.
455	Hartzler, L., Munns, S. L., Bennett, A. F. and Hicks, J. (2006a). Metabolic and
456	blood gas dependance on digestive state in the Sannah monitor lizard, Varanus
457	exanthematicus: an assessment of the alkaline tide. J. Exp. Biol. 209, 1052-1057.
458	Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b).
458 459	Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator,
458 459 460	Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A , 368-274.
458 459 460 461	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the
458 459 460 461 462	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4.
458 459 460 461 462 463	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i>
458 459 460 461 462 463 464	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D.
458 459 460 461 462 463 464 465	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of
458 459 460 461 462 463 464 465 466	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of
458 459 460 461 462 463 464 465 466 467	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273.
458 459 460 461 462 463 464 465 466 467 468	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005).
458 459 460 461 462 463 464 465 466 467 468 469	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator,
458 459 460 461 462 463 464 465 466 467 468 469 470	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339.
458 459 460 461 462 463 464 465 466 467 468 469 470 471	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348. Seymour, R., Bennett-Stamper, C., Johnston, S., Carrier, D. R. and Grigg, G.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348. Seymour, R., Bennett-Stamper, C., Johnston, S., Carrier, D. R. and Grigg, G. (2004). Evidence for Endothermic ancestors of crocodiles at the stem of archosaur
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348. Seymour, R., Bennett-Stamper, C., Johnston, S., Carrier, D. R. and Grigg, G. (2004). Evidence for Endothermic ancestors of crocodiles at the stem of archosaur evolution. <i>Physiol. Biochem. Zool.</i> 77, 1051-1067.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348. Seymour, R., Bennett-Stamper, C., Johnston, S., Carrier, D. R. and Grigg, G. (2004). Evidence for Endothermic ancestors of crocodiles at the stem of archosaur evolution. <i>Physiol. Biochem. Zool.</i> 77, 1051-1067. Uriona, T. and Farmer, C. G. (2006). Contribution of the diaphragmaticus
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	 Hartzler, L. K., Munns, S. L., Bennett, A. F. and Hicks, J. W. (2006b). Recovery from an Activity - Induced Metabolic Acidosis in the American Alligator, <i>Alligator mississipiensis. Comp. Biochem. Physiol.</i> 143A, 368-274. Hartzler, L. K., Munns, S. L. and Hicks, J. W. (2004). Contribution of the hepatic piston to ventilation in the American alligator. <i>FASEB J.</i> 18, Abstr. 238.4. Munns, S. (2000). Ventilation in freely-moving reptiles. <i>Department of Zoology</i> <i>University of Melbourne</i> Ph.D. Munns, S. L., Frappell, P. B. and Evans, B. K. (1998). The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (<i>Crocodylus porosus</i>). <i>Physiol. Zool.</i> 71, 267-273. Munns, S. L., Hartzler, L. K., Bennett, A. F. and Hicks, J. W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, <i>Alligator mississippiensis. J. Exp. Biol.</i> 208, 3331-3339. Naifeh, K. H., Huggins, S. E. and Hoff, H. E. (1970). The nature of the ventilatory period in crocodilian respiration. <i>Respiration Physiology</i> 10, 338-348. Seymour, R., Bennett-Stamper, C., Johnston, S., Carrier, D. R. and Grigg, G. (2004). Evidence for Endothermic ancestors of crocodiles at the stem of archosaur evolution. <i>Physiol. Biochem. Zool.</i> 77, 1051-1067. Uriona, T. and Farmer, C. G. (2006). Contribution of the diaphragmaticus muscle to vital capacity in fasting and post-prandial American alligators (<i>Alligator</i>

- Uriona, T. and Farmer, C. G. (2008). Recruitment of the diaphragmaticus muscle, ischiopubis and other respiratory muscle to control pitch and roll in the American alligator (Alligator mississippiensis). J. Exp. Biol. 211, 1141-1147.
- Webb, G., Manolis, S. and Whitehead, P. (1993). Wildlife management:
- Crocodiles and Alligators, pp. 552: University of Minnesota Press.

486 Figure 1: Ventilatory airflow (arbitrary units) and associated diaphragmaticus muscle
487 EMG activity in one representative crocodile (mass 0.72 kg) at 30°C (A), 20°C (B) and

487 after hypercapnic gas exposure (C). Inspiration occurs when the airflow trace is above

489 zero and expiration when the trace is below zero. Periods of gular flutter (*) were present

490 in crocodiles at 30°C and during hypercaphic exposure. Bar = 2 minutes.

- 491
- 492

493 **Figure 2:** The effect of transection of the diaphragmaticus muscle on the duration of

494 inspiration (T_I), the rate of inspiration (V_{TI}/T_I) and tidal volume (V_T). Closed bars 495 indicate the control (intact diaphragmaticus) and the open bars indicate surgically-altered 496 (transected diaphragmaticus) animals. \dagger indicates a significant difference compared to 497 30°C in crocodiles with the same status of the diaphragmaticus muscle. * indicates a 498 significant difference compared to crocodiles with an intact diaphragmaticus muscle 499 under the same experimental conditions. Data are mean±s.e.m., n=5.

500

501

502 Figure 3: The effect of transection of the diaphragmaticus muscle on the duration of 503 expiration (T_E), the duration of the non ventilatory period (T_{NVP}) and breathing frequency 504 (f). Closed bars indicate the control (intact diaphragmaticus) and the open bars indicate 505 transected diaphragmaticus muscles. † indicates a significant difference compared to 506 30°C in crocodiles with the same status of the diaphragmaticus muscle. There were no 507 significant differences when comparing crocodiles with and without a functional 508 diaphragmaticus muscle under the same experimental conditions. Data are mean±s.e.m., 509 n=5.

510

511

512 **Figure 4:** The effect of transection of the diaphragmaticus muscle on the minute

513 ventilation (\dot{V}_E), the rate of oxygen consumption (\dot{V}_{O_2}) and the rate of carbon dioxide

514 production (\dot{V}_{CO_2}). Closed bars indicate the control (intact diaphragmaticus) and the open

515 bars indicate transected diaphragmaticus muscles. † indicates a significant difference

516 compared to 30°C in crocodiles with the same status of the diaphragmaticus muscle. *

517 indicates a significant difference compared to crocodiles with a functional

518 diaphragmaticus muscle under the same experimental conditions. Data are mean \pm s.e.m., 519 n=5.

- 520
- 521

522 Figure 5: The effect of transection of the diaphragmaticus muscle on the respiratory 523 exchange ratio (R), the air convention requirement for oxygen (ACR O₂) and the air 524 convention requirement for carbon dioxide (ACR CO₂). Closed bars indicate the control 525 (intact diaphragmaticus) and the open bars indicate transected diaphragmaticus muscles. 526 † indicates a significant difference compared to 30°C in crocodiles with the same status of 527 the diaphragmaticus muscle. * indicates a significant difference compared to crocodiles 528 with a functional diaphragmaticus muscle under the same experimental conditions. Data 529 are mean±s.e.m., n=5.

- 530
- 531

532 Figure 6: The effect of transection of the diaphragmaticus muscle on the partial pressure 533 of arterial O_2 (PaO₂), the partial pressure of arterial O_2 (PaCO₂) and the arterial O_2 534 content (CaO_2). Closed bars indicate the control (intact diaphragmaticus) and the open 535 bars indicate transected diaphragmaticus muscles. † indicates a significant difference 536 compared to 30°C in crocodiles with the same status of the diaphragmaticus muscle. 537 There were no significant differences when comparing crocodiles with and without a 538 functional diaphragmaticus muscle under the same experimental conditions. Data are 539 mean±s.e.m., n=3.

540

541

542 **Figure 7:** The effect of transected of the diaphragmaticus muscle on the arterial pH

543 (pHa), the arterial haemoglobin concentration ([Hb]a) and the arterial lactate

544 concentration ([La]a). Closed bars indicate the control (intact diaphragmaticus) and the

545 open bars indicate transected diaphragmaticus muscles. † indicates a significant

546 difference compared to 30°C in crocodiles with the same status of the diaphragmaticus

547 muscle. There were no significant differences when comparing crocodiles with and

548 without a functional diaphragmaticus muscle under the same experimental conditions.

549 Data are mean±s.e.m., n=3.

550

551

552

553