68 research outputs found
The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?
We review five independent techniques which are used to set the distance
scale to globular clusters, including subdwarf main sequence fitting utilizing
the recent Hipparcos parallax catalogue. These data together all indicate that
globular clusters are farther away than previously believed, implying a
reduction in age estimates. This new distance scale estimate is combined with a
detailed numerical Monte Carlo study designed to assess the uncertainty
associated with the theoretical age-turnoff luminosity relationship in order to
estimate both the absolute age and uncertainty in age of the oldest globular
clusters. Our best estimate for the mean age of the oldest globular clusters is
now Gyr, with a one-sided, 95% confidence level lower limit of
9.5 Gyr. This represents a systematic shift of over 2 compared to our
earlier estimate, due completely to the new distance scale---which we emphasize
is not just due to the Hipparcos data. This now provides a lower limit on the
age of the universe which is consistent with either an open universe, or a
flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc).
Our new study also explicitly quantifies how remaining uncertainties in the
distance scale and stellar evolution models translate into uncertainties in the
derived globular cluster ages. Simple formulae are provided which can be used
to update our age estimate as improved determinations for various quantities
become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty,
submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat
Georg Cremer / Nils Goldschmidt / Sven Höfer: Soziale Dienstleistungen, Ökonomie, Recht, Politik, 2013
- …
