283 research outputs found

    Decline of long-range temporal correlations in the human brain during sustained wakefulness

    Get PDF
    Sleep is crucial for daytime functioning, cognitive performance and general well-being. These aspects of daily life are known to be impaired after extended wake, yet, the underlying neuronal correlates have been difficult to identify. Accumulating evidence suggests that normal functioning of the brain is characterized by long-range temporal correlations (LRTCs) in cortex, which are supportive for decision-making and working memory tasks. Here we assess LRTCs in resting state human EEG data during a 40-hour sleep deprivation experiment by evaluating the decay in autocorrelation and the scaling exponent of the detrended fluctuation analysis from EEG amplitude fluctuations. We find with both measures that LRTCs decline as sleep deprivation progresses. This decline becomes evident when taking changes in signal power into appropriate consideration. Our results demonstrate the importance of sleep to maintain LRTCs in the human brain. In complex networks, LRTCs naturally emerge in the vicinity of a critical state. The observation of declining LRTCs during wake thus provides additional support for our hypothesis that sleep reorganizes cortical networks towards critical dynamics for optimal functioning

    Intracortical Causal Information Flow of Oscillatory Activity (Effective Connectivity) at the Sleep Onset Transition

    Get PDF
    We investigated the sleep onset transition in humans from an effective connectivity perspective in a baseline condition (approx. 16 h of wakefulness) and after sleep deprivation (40 h of sustained wakefulness). Using EEG recordings (27 derivations), source localization (LORETA) allowed us to reconstruct the underlying patterns of neuronal activity in various brain regions, e.g., the default mode network (DMN), dorsolateral prefrontal cortex and hippocampus, which were defined as regions of interest (ROI). We applied isolated effective coherence (iCOH) to assess effective connectivity patterns at the sleep onset transition [2 min prior to and 10 min after sleep onset (first occurrence of stage 2)]. ICOH reveals directionality aspects and resolves the spectral characteristics of information flow in a given network of ROIs. We observed an anterior-posterior decoupling of the DMN, and moreover, a prominent role of the posterior cingulate cortex guiding the process of the sleep onset transition, particularly, by transmitting information in the low frequency range (delta and theta bands) to other nodes of DMN (including the hippocampus). In addition, the midcingulate cortex appeared as a major cortical relay station for spindle synchronization (originating from the thalamus; sigma activity). The inclusion of hippocampus indicated that this region might be functionally involved in sigma synchronization observed in the cortex after sleep onset. Furthermore, under conditions of increased homeostatic pressure, we hypothesize that an anterior-posterior decoupling of the DMN occurred at a faster rate compared to baseline overall indicating weakened connectivity strength within the DMN. Finally, we also demonstrated that cortico-cortical spindle synchronization was less effective after sleep deprivation than in baseline, thus, reflecting the reduction of spindles under increased sleep pressure

    Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns

    Get PDF
    BACKGROUND: Sleep homeostasis refers to the increase of sleep pressure during waking and the decrease of sleep intensity during sleep. Electroencephalography (EEG) slow-wave activity (SWA; EEG power in the 0.75-4.5 Hz range) is a marker of non-rapid eye movement (NREM) sleep intensity and can be used to model sleep homeostasis (Process S). SWA shows a frontal predominance, and its increase after sleep deprivation is most pronounced in frontal areas. The question arises whether the dynamics of the homeostatic Process S also show regional specificity. Furthermore, the spatial distribution of SWA is characteristic for an individual and may reflect traits of functional anatomy. The aim of the current study was to quantify inter-individual variation in the parameters of Process S and investigate their spatial distribution. Polysomnographic recordings obtained with 27 EEG derivations of a baseline night of sleep and a recovery night of sleep after 40 h of sustained wakefulness were analyzed. Eight healthy young subjects participated in this study. Process S was modeled by a saturating exponential function during wakefulness and an exponential decline during sleep. Empirical mean SWA per NREM sleep episode at episode midpoint served for parameter estimation at each derivation. Time constants were restricted to a physiologically meaningful range. RESULTS: For both, the buildup and decline of Process S, significant topographic differences were observed: The decline and buildup of Process S were slowest in fronto-central areas while the fastest dynamics were observed in parieto-occipital (decrease) and frontal (buildup) areas. Each individual showed distinct spatial patterns in the parameters of Process S and the parameters differed significantly between individuals. CONCLUSIONS: For the first time, topographical aspects of the buildup of Process S were quantified. Our data provide an additional indication of regional differences in sleep homeostasis and support the notion of local aspects of sleep regulation

    Cognitive Performance Measures in Bioelectromagnetic Research - Critical Evaluation and Recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steady increase of mobile phone usage has led to a rising concern about possible adverse health effects of radio frequency electromagnetic field (RF EMF) exposure at intensities even below the existing safety limits. Accumulating evidence suggests that pulse-modulated RF EMF may alter brain physiology. Yet, whereas effects on the human electroencephalogram in waking and sleep have repeatedly been shown in recent years, results on cognitive performance are inconsistent.</p> <p>Methods</p> <p>This review compares 41 provocation studies regarding the effects of RF EMF exposure similar to mobile telephones on cognitive performance measures in humans. The studies were identified via systematic searches of the databases Pub Med and ISI Web of Science and were published in peer-reviewed journals between 1998 and the end of 2009.</p> <p>Results</p> <p>Based on a critical discussion within the scope of methodological standards it is concluded that state-of-the-art-methods in bio-electromagnetic research on RF EMF effects and cognition have neither been specified nor fully implemented over the last 10-11 years. The lack of a validated tool, which reliably assesses changes in cognitive performance caused by RF EMF exposure, may contribute to the current inconsistencies in outcomes. The high variety of findings may also be due to methodological issues such as differences in sample size and the composition of study groups, experimental design, exposure setup as well as the exposure conditions, and emphasizes the need for a standardized protocol in bioelectromagnetic research.</p> <p>Conclusions</p> <p>At present, no underlying biological mechanism has been identified which mediates the effects on brain functioning as observed in electroencephalographic (EEG) studies. A future aim must be to identify this mechanism as well as a reliable exposure protocol in order to gain more insights into possible behavioral and related health consequences of high-frequency EMF exposure.</p

    Oscillatory patterns in the electroencephalogram at sleep onset

    Full text link
    Falling asleep is a gradually unfolding process. We investigated the role of various oscillatory activities including sleep spindles and alpha and delta oscillations at sleep onset (SO) by automatically detecting oscillatory events. We used two datasets of healthy young males, eight with four baseline recordings, and eight with a baseline and recovery sleep after 40 h of sustained wakefulness. We analyzed the 2-min interval before SO (stage 2) and the five consecutive 2-min intervals after SO. The incidence of delta/theta events reached its maximum in the first 2-min episode after SO, while the frequency of them was continuously decreasing from stage 1 onwards, continuing over SO and further into deeper sleep. Interestingly, this decrease of the frequencies of the oscillations were not affected by increased sleep pressure, in contrast to the incidence which increased. We observed an increasing number of alpha events after SO, predominantly frontally, with their prevalence varying strongly across individuals. Sleep spindles started to occur after SO, with first an increasing then a decreasing incidence and a continuous decrease in their frequency. Again, the frequency of the spindles was not altered after sleep deprivation. Oscillatory events revealed derivation dependent aspects. However, these regional aspects were not specific of the process of SO but rather reflect a general sleep related phenomenon. No individual traits of SO features (incidence and frequency of oscillations) and their dynamics were observed. Delta/theta events are important features for the analysis of SO in addition to slow waves

    Non-rapid eye movement sleep with low muscle tone as a marker of rapid eye movement sleep regulation

    Get PDF
    BACKGROUND: It was recently reported that epochs of non-REM sleep (NREMS) with low muscle tone represent a partial correlate of REM sleep (REMS). To further investigate this phenomenon, episodes of restricted night-time sleep (23:00 – 03.00h) and subsequent morning sleep (10:00 – 13:00h) were analysed. RESULTS: Epochs of NREMS with low muscle tone (NLMT) were identified. Their frequency was higher in morning sleep than in night sleep. At night, the latency to the first occurrence of NLMT showed a bimodal distribution with modes at sleep onset and close to REMS onset. In morning sleep, the distribution was unimodal with the mode at sleep onset. An episode of NLMT at sleep onset occurred in 35.5% of the night sleep episodes and in 60.9% of the morning sleep episodes without sleep onset REMS (SOREMS). Also SOREMS occurred predominantly in morning sleep. REMS episodes were longer and NREMS episodes shorter in morning sleep than in night sleep, whereas cycle duration did not differ. Simulating the time course of slow-wave activity revealed a close correspondence between empirical and computed values for night sleep, and some discrepancies for morning sleep. CONCLUSION: The results provide further evidence that NREMS with low muscle tone is a marker of REMS regulation. NLMT at sleep onset may represent an early manifestation of REMS

    Developmental Changes in Sleep Oscillations during Early Childhood

    Get PDF
    Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function

    Human sleep and its regulation

    Full text link

    Naps not as effective as a night of sleep at dissipating sleep pressure

    Full text link
    The two-process model of sleep posits that two processes interact to regulate sleep and wake: a homeostatic (Process S) and a circadian process (Process C). Process S compensates for sleep loss by increasing sleep duration and intensity. Process C gates the timing of sleep/wake favouring sleep during the circadian night in humans. In this study, we examined whether taking six naps throughout a 24-hr period would result in the same amount of dissipation of homeostatic pressure at the end of the day as a night of sleep, when time in bed is equivalent. Data from 46 participants (10-23 years; mean = 14.5 [± 2.9]; 25 females) were analysed. Slow-wave energy, normalized to account for individual differences in slow-wave activity, was used as a measure of sleep homeostasis. In the nap condition, slow-wave energy of six naps distributed equally during a 24-hr period was calculated. In the baseline condition, slow-wave energy was measured after 9-hr time in bed. A paired t-test was used to compare nap and baseline conditions. A linear regression was used to examine whether slow-wave energy varied as a function of age. Slow-wave energy was greater during baseline than the nap condition (p < .001). No association between age and slow-wave energy was found for baseline or nap conditions. Our findings indicate that multiple naps throughout the day are not as effective at dissipating sleep pressure as a night of sleep. This is likely due to the influence of the circadian system, which staves off sleep during certain times of the day

    Asymptomatic Periprosthetic Joint Infection of the Hip with High-Virulence Pathogens: Report of Two Cases

    Full text link
    Periprosthetic joint infection (PJI) may be a life-threatening condition, particularly when caused by pathogens with high virulence, capable of developing secondary bloodstream infection. We report two cases of chronic PJI of the hip, one with Staphylococcus aureus in a 27-year-old female with severe anorexia, the other one with Staphylococcus lugdunensis in a 74-year-old female suffering from morbid obesity. Both infections did not cause relevant symptoms over time despite the absence of suppressive antibiotic treatment. To our knowledge, there are no similar cases described in the literature. While it remains difficult to recommend postponing treatment in such cases, this option may be an alternative to suppressive antibiotic therapy
    • 

    corecore