12 research outputs found

    Diversity and ethics in trauma and acute care surgery teams: results from an international survey

    Get PDF
    Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance

    Case Report Herpes Simplex Viral Encephalitis Masquerading as a Classic Left MCA Stroke

    No full text
    Objective. Stroke is a clinical diagnosis, with a history and physical examination significant for acute onset focal neurological symptoms and signs, often occurring in patients with known vascular risk factors and is frequently confirmed radiographically. Case Report. A 79-year-old right-handed woman, with a past medical history of hypertension, hyperlipidemia, and prior transient ischemic attack (TIA), presented with acute onset global aphasia and right hemiparesis, in the absence of fever or prodrome. This was initially diagnosed as a proximal left middle cerebral artery (MCA) stroke. However, CT perfusion failed to show evidence of reduced blood volume, and CT angiogram did not show evidence of a proximal vessel occlusion. Furthermore, MRI brain did not demonstrate any areas of restricted diffusion. EEG demonstrated left temporal periodic lateralized epileptiform discharges (PLEDs). The patient was empirically loaded with a bolus valproic acid and started on acyclovir, both intravenously. CSF examination demonstrated a pleocytosis and PCR confirmed the diagnosis of herpes simplex viral encephalitis (HSVE). Conclusions. HSVE classically presents in a nonspecific fashion with fever, headache, and altered mental status. However, acute focal neurological signs, mimicking stroke, are possible. A high degree of suspicion is required to institute appropriate therapy and decrease morbidity and mortality associated with HSVE

    A Case of Acute Disseminated Encephalomyelitis in a Middle-Aged Adult

    Get PDF
    Objectives. Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disorder that is often preceded by infection or recent vaccination. Encephalopathy and focal neurological deficits are usually manifest several weeks after a prodromal illness with rapidly progressive neurologic decline. ADEM is most commonly seen in children and young adults, in which prognosis is favorable, but very few cases have been reported of older adults with ADEM and thus their clinical course is unknown. Methods. Here we present a case of ADEM in a middle-aged adult that recovered well after treatment. Results. A 62-year-old man presented with encephalopathy and rapid neurological decline following a gastrointestinal illness. A brain MRI revealed extensive supratentorial white matter hyperintensities consistent with ADEM and thus he was started on high dose intravenous methylprednisolone. He underwent a brain biopsy showing widespread white matter inflammation secondary to demyelination. At discharge, his neurological exam had significantly improved with continued steroid treatment and four months later, he was able to perform his ADLs. Conclusions. This case of ADEM in a middle-aged adult represents an excellent response to high dose steroid treatment with a remarkable neurological recovery. Thus it behooves one to treat suspected cases of ADEM in an adult patient aggressively, as outcome can be favorable

    Critical care capacity in Canada: results of a national cross-sectional study

    No full text
    Abstract Introduction Intensive Care Units (ICUs) provide life-supporting treatment; however, resources are limited, so demand may exceed supply in the event of pandemics, environmental disasters, or in the context of an aging population. We hypothesized that comprehensive national data on ICU resources would permit a better understanding of regional differences in system capacity. Methods After the 2009–2010 Influenza A (H1N1) pandemic, the Canadian Critical Care Trials Group surveyed all acute care hospitals in Canada to assess ICU capacity. Using a structured survey tool administered to physicians, respiratory therapists and nurses, we determined the number of ICU beds, ventilators, and the ability to provide specialized support for respiratory failure. Results We identified 286 hospitals with 3170 ICU beds and 4982 mechanical ventilators for critically ill patients. Twenty-two hospitals had an ICU that routinely cared for children; 15 had dedicated pediatric ICUs. Per 100,000 population, there was substantial variability in provincial capacity, with a mean of 0.9 hospitals with ICUs (provincial range 0.4-2.8), 10 ICU beds capable of providing mechanical ventilation (provincial range 6–19), and 15 invasive mechanical ventilators (provincial range 10–24). There was only moderate correlation between ventilation capacity and population size (coefficient of determination (R2) = 0.771). Conclusion ICU resources vary widely across Canadian provinces, and during times of increased demand, may result in geographic differences in the ability to care for critically ill patients. These results highlight the need to evolve inter-jurisdictional resource sharing during periods of substantial increase in demand, and provide background data for the development of appropriate critical care capacity benchmarks

    Critical care capacity in Canada: results of a national cross-sectional study

    Get PDF
    Introduction: Intensive Care Units (ICUs) provide life-supporting treatment; however, resources are limited, so demand may exceed supply in the event of pandemics, environmental disasters, or in the context of an aging population. We hypothesized that comprehensive national data on ICU resources would permit a better understanding of regional differences in system capacity. Methods After the 2009–2010 Influenza A (H1N1) pandemic, the Canadian Critical Care Trials Group surveyed all acute care hospitals in Canada to assess ICU capacity. Using a structured survey tool administered to physicians, respiratory therapists and nurses, we determined the number of ICU beds, ventilators, and the ability to provide specialized support for respiratory failure. Results We identified 286 hospitals with 3170 ICU beds and 4982 mechanical ventilators for critically ill patients. Twenty-two hospitals had an ICU that routinely cared for children; 15 had dedicated pediatric ICUs. Per 100,000 population, there was substantial variability in provincial capacity, with a mean of 0.9 hospitals with ICUs (provincial range 0.4-2.8), 10 ICU beds capable of providing mechanical ventilation (provincial range 6–19), and 15 invasive mechanical ventilators (provincial range 10–24). There was only moderate correlation between ventilation capacity and population size (coefficient of determination (R2) = 0.771). Conclusion ICU resources vary widely across Canadian provinces, and during times of increased demand, may result in geographic differences in the ability to care for critically ill patients. These results highlight the need to evolve inter-jurisdictional resource sharing during periods of substantial increase in demand, and provide background data for the development of appropriate critical care capacity benchmarks.Critical Care Medicine, Division ofMedicine, Department ofMedicine, Faculty ofNon UBCReviewedFacult
    corecore