2 research outputs found

    Flooding in Landsat across tidal systems (FLATS): An index for intermittent tidal filtering and frequency detection in salt marsh environments

    No full text
    Remote sensing can provide critical information about the health and productivity of coastal wetland ecosystems, including extent, phenology, and carbon sequestration potential. Unfortunately, periodic inundation from tides dampens the spectral signal and, in turn, causes remote sensing-based models to produce unreliable results, altering estimates of ecosystem function and services. We created the Flooding in Landsat Across Tidal Systems (FLATS) index to identify flooded pixels in Landsat 8 30-meter data and provide an inundated pixel filtering method. Novel applications of FLATS including inundation frequency and pattern detection are also demonstrated. The FLATS index was developed to identify flooding in Spartina alterniflora tidal marshes. We used ground truth inundation data from a PhenoCam and Landsat 8 pixels within the PhenoCam field of view on Sapelo Island, GA, USA to create the index. The FLATS index incorporates a normalized difference water index (NDWI) and a phenology-related variable into a generalized linear model (GLM) that predicted the presence or absence of marsh flooding. The FLATS equation for predicting flooding is 1-1e-1.6+20.0*NDWI4,6+68.6*Pheno3,4, and we found that a cutoff 0.1 was the optimized value for separating flooded and non-flooded pixel classes. FLATS identified flooded pixels with an overall accuracy of 96% and 93% across training data and novel testing data, respectively. FLATS correctly identified true flooded pixels with a sensitivity of 97% and 81%, across training and testing data, respectively. We established the need to apply FLATS when conducting vegetation time-series analysis in coastal marshes in order to reduce the per-pixel reflectance variations attributed to tidal flooding. We found that FLATS identified 12.5% of pixels as flooded in Landsat 8 tidal marsh vegetation time-series from 2013 to 2020, after traditional quality control and preprocessing steps were conducted, which could then be filtered out or modeled separately in order to conduct remotely sensed vegetation assessments. Therefore, in tidal wetlands, we recommend incorporating FLATS into Landsat 8 preprocessing prior to vegetation analysis. We also demonstrated innovative applications for the FLATS index, particularly in detecting flooding frequency and flooding patterns relevant to the broader biophysical modeling framework, including mapping marsh vulnerability due to fluctuation in inundation frequency. The FLATS index represents advancements in the understanding and application of inundation indices for coastal marshes

    Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance

    No full text
    https://kent-islandora.s3.us-east-2.amazonaws.com/node/17226/87203-thumbnail.jpgThe period of disrupted human activity caused by the COVID-19 pandemic, coined the “anthropause,” altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.</p
    corecore