3,246 research outputs found
Household food security status in South Africa
The Human Sciences Research Council has established a policy research initiative to monitor household food security and to identify and evaluate policy options. In this special edition, a selection of articles from this project is assembled. While deep chronic hunger has fallen with the expansion of the social grants, under-nutrition is a very serious and widespread challenge. This special edition draws together the best available evidence on household food security with the aim of stimulating wider debate.food security, social grants, smallholder and subsistence production, poverty, Consumer/Household Economics,
Trajectories of objectively measured physical activity in free-living older men.
BACKGROUND: The steep decline in physical activity (PA) among the oldest old is not well understood; there is little information about the patterns of change in PA and sedentary behaviour (SB) in older people. Longitudinal data on objectively measured PA data can give insights about how PA and SB change with age.
METHODS: Men age 70-90 yr, from a United Kingdom population-based cohort wore a GT3X accelerometer over the hip annually on up to three occasions (56%, 50%, and 51% response rates) spanning 2 yr. Multilevel models were used to estimate change in activity. Men were grouped according to achieving ≥150 min·wk of MVPA in bouts of ≥10 min (current guidelines) at two or three time points.
RESULTS: A total of 1419 ambulatory men had ≥600 min wear time on ≥3 d at ≥2 time points. At baseline, men took 4806 steps per day and spent 72.5% of their day in SB, 23.1% in light PA, and 4.1% in moderate-to-vigorous PA (MVPA). Mean change per year was -341 steps, +1.1% SB, -0.7% light PA, and -0.4% MVPA each day (all P 30 min increased from 5.1 by 0.1 per year (P = 0.02).
CONCLUSIONS: Among older adults, the steep decline in total PA occurred because of reductions in MVPA, while light PA is relatively spared and sedentary time and long sedentary bouts increase
Recommended from our members
Sting-jet windstorms over the North Atlantic: climatology and contribution to extreme wind risk
Extratropical cyclones with damaging winds can have large socio-economic impacts when they make landfall. During the last decade, studies have identified a mesoscale transient jet, the sting jet, that descends from the tip of the hooked cloud head towards the top of the boundary layer in the dry intrusion region as a cause of strong surface winds, and especially gusts, in some cyclones. While many case studies have focused on the dynamics and characteristics of these jets, there have been few studies that assess the climatology of the associated cyclones and their importance for wind risk. Here we determine the climatological characteristics of North Atlantic cyclones in terms of the possibility that they had sting jets using a previously-published sting-jet precursor diagnostic applied to ERA-Interim data over 32 extended winter seasons from 1979–2012. Of the 5447 cyclones tracked, 32% had the precursor (42% in the 22% of cyclones that developed explosively). Precursor storms have a more southerly and zonal storm track than storms without the precursor and precursor storms tend to be more intense as defined by 850-hPa relative vorticity. This study also shows that precursor storms are the dominant cause of cyclone-related resolved strong wind events over the British Isles for 850-hPa windspeeds exceeding 30 ms−1. Hence, early detection of a sting jet storm could give advance warning of enhanced wind risk. However, over continental northwestern Europe, precusor cyclone-related windstorm events occur far less often
Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis
The neuroinflammatory disease multiple sclerosis is driven by autoimmune pathology in the central nervous system. However, the trigger of the autoimmune pathogenic process is unknown. MS models in immunologically naïve, specific‐pathogen‐free bred rodents support an exogenous trigger, such as an infection. The validity of this outside–in pathogenic concept for MS has been frequently challenged by the difficulty to translate pathogenic concepts developed in these models into effective therapies for the MS patient. Studies in well‐validated non‐human primate multiple sclerosis models where, just like in humans, the autoimmune pathogenic process develops from an experienced immune system trained by prior infections, rather support an endogenous trigger. Data reviewed here corroborate the validity of this inside–out pathogenic concept for multiple sclerosis. They also provide a plausible sequence of events reminiscent of Wilkin’s primary lesion theory: (i) that autoimmunity is a physiological response of the immune system against excess antigen turnover in diseased tissue (the primary lesion) and (ii) that individuals developing autoimmune disease are (genetically predisposed) high responders against critical antigens. Data obtained in multiple sclerosis brains reveal the presence in normally appearing white matter of myelinated axons where myelin sheaths have locally dissociated from their enwrapped axon (i.e., blistering). The ensuing disintegration of axon–myelin units potentially causes the excess systemic release of post‐translationally modified myelin. Data obtained in a unique primate multiple sclerosis model revealed a core pathogenic role of T cells present in the normal repertoire, which hyper‐react to post‐translationally modified (citrullinated) myelin–oligodendrocyte glycoprotein and evoke clinical and pathological aspects of multiple sclerosis
Recommended from our members
Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes.
Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function
Mapping and analysis of types of migration from CEE countries. Country Report the Netherlands
Introduction
The objective of this country report about the Netherlands is to describe the size and nature of
migration from Central and Eastern European (CEE) countries to the Netherlands (chapter 2), to identify
two urban regions and six separate municipalities within these regions as research locations for this
study and to collect available information about CEE migrants in these regions (chapter 3) and, finally, to
identify the most relevant types of CEE migrants in the Netherlands (chapter 4). We will start, however,
with a discussion of the available data sources and research about CEE migrants in the Netherlands. In
general, there are three different sources of information about CEE migrants in the Netherlands
Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases:A Template for Innovative Therapy
Neurodegenerative and psychiatric diseases (NPDs) are today's most important group of diseases, surpassing both atherosclerotic cardiovascular disease and cancer in morbidity incidence. Although NPDs have a dramatic impact on our society because of their high incidence, mortality, and severe debilitating character, remarkably few effective interventions have become available. The current treatments, if available, comprise the lifelong intake of general immunosuppressants to delay disease progression or neurotransmitter antagonists/agonists to dampen undesired behaviors. The long-term usage of such medication, however, coincides with often severe adverse side effects. There is, therefore, an urgent need for safe and effective treatments for these diseases. Here, we discuss that many NPDs coincide with subtle chronic or flaring brain inflammation sometimes escalating with infiltrations of lymphocytes in the inflamed brain parts causing mild to severe or even lethal brain damage. Thus, NPDs show all features of autoimmune diseases. In this review, we postulate that NPDs resemble autoimmune-driven inflammatory diseases in many aspects and may belong to the same disease spectrum. Just like in autoimmune diseases, NPD symptoms basically are manifestations of a chronic self-sustaining inflammatory process with detrimental consequences for the patient. Specific inhibition of the destructive immune responses in the brain, leaving the patient's immune system intact, would be the ultimate solution to cure patients from the disease. To reach this goal, the primary targets, e.g., the primary self-antigens (pSAgs) of the patient's chronic (auto)immune response, need to be identified. For a few major NPDs, immunological studies led to the identification of the pSAgs involved in the autoimmune damage of specific brain parts. However, further research is needed to complete the list of pSAgs for all NPDs. Such immunological studies will not only provide crucial insights into NPD pathogenesis but also ultimately enable the development of a new generation of safe and effective immunotherapies for NPDs. Interventions that will dramatically improve the life expectancy and quality of life of individual patients and, moreover, will significantly reduce the health-care costs of the society in general
Recommended from our members
Enhancement of microphase ordering and mechanical properties of supramolecular hydrogen-bonded polyurethane networks
The improvement of the mechanical properties of supramolecular polymer networks is currently receiving significant interest both within academic and industrial circles in order to enable the application of these desirable stimuli-responsive materials in real world situations. In this study, structural units within phase separated supramolecular polyurethane (SPU) networks have been changed to assess the role of the hard segment composition on the mechanical characteristics of the resultant materials. Notably, increasing the degrees of conformational freedom within the hard segment component of a SPU was found to improve the phase separation and as a consequence also increase the storage modulus of the polymer network. Specifically, replacing 4,4′-methylene diphenyl diisocyanate with 4,4’-dibenzyl diisocyanate within a SPU improved the packing efficiency of the isocyanate derived hard segments and improved the physical properties of the supramolecular polymer network. This study utilised a combination of SAXS, WAXS and AFM analysis to assess the degree of crystallinity within the hard segment component of the polymer network whilst rheological analysis was used to establish the mechanical characteristics of the polymers
- …