212 research outputs found

    A 2.4% DETERMINATION of the LOCAL VALUE of the HUBBLE CONSTANT

    Get PDF
    We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on 300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25, 2.51, 72.04,2.67, 76.18,2.37, and 74.50,3.27 km s-1 Mpc-1, respectively. Our best estimate of H 0 = 73.24, 1.74 km s-1 Mpc-1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93, 0.62 km s-1 Mpc-1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3, 0.7 km s-1 Mpc-1 based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H 0 at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN eff ≈ 0.4-1. We anticipate further significant improvements in H 0 from upcoming parallax measurements of long-period MW Cepheid

    BVRI Light Curves for 22 Type Ia Supernovae

    Full text link
    We present 1210 Johnson/Cousins B,V,R, and I photometric observations of 22 recent type Ia supernovae (SNe Ia): SN 1993ac, SN 1993ae, SN 1994M, SN 1994S, SN 1994T, SN 1994Q, SN 1994ae, SN 1995D, SN 1995E, SN 1995al, SN 1995ac, SN 1995ak, SN 1995bd, SN 1996C, SN 1996X, SN 1996Z, SN 1996ab, SN 1996ai, SN 1996bk, SN 1996bl, SN 1996bo, and SN 1996bv. Most of the photometry was obtained at the Fred Lawrence Whipple Observatory (FLWO) of the Harvard-Smithsonian Center for Astrophysics in a cooperative observing plan aimed at improving the data base for SN Ia. The redshifts of the sample range from czcz=1200 to 37000 km s−1^{-1} with a mean of czcz=7000 km s−1^{-1}.Comment: Accepted to the Astronomical Journal, 41 pages, 8 figure

    The Luminosity of SN 1999by in NGC 2841 and the Nature of `Peculiar' Type Ia Supernovae

    Full text link
    We present UBVRIJHK photometry and optical spectroscopy of the so-called 'peculiar' Type Ia supernova 1999by in NGC 2841. The observations began one week before visual maximum light which is well-defined by daily observations. The light curves and spectra are similar to those of the prototypical subluminous event SN 1991bg. We find that maximum light in B occurred on 1999 May 10.3 UT (JD 2,451,308.8 +/- 0.3) with B=13.66 +/- 0.02 mag and a color of B_max-V_max=0.51 +/- 0.03 mag. The late-time color implies minimal dust extinction from the host galaxy. Our photometry, when combined with the recent Cepheid distance to NGC 2841 (Macri et al. 2001), gives a peak absolute magnitude of M_B=-17.15 +/- 0.23 mag, making SN 1999by one of the least luminous Type Ia events ever observed. We estimate a decline rate parameter of dm15(B)=1.90 mag, versus 1.93 for SN 1991bg, where 1.10 is typical for so-called 'normal' events. We compare SN 1999by with other subluminous events and find that the B_max-V_max color correlates strongly with the decline rate and may be a more sensitive indicator of luminosity than the fading rate for these objects. We find a good correlation between luminosity and the depth of the spectral feature at 580 nm, which had been attributed solely to Si II. We show that in cooler photospheres the 580 nm feature is dominated by Ti II, which provides a simple physical explanation for the correlation. Using only subluminous Type Ia supernovae we derive a Hubble parameter of H_0=75 +12 -11 km/s Mpc, consistent with values found from brighter events.Comment: 36 preprint pages including 18 figures. Near-IR photometry of the SN has been added to the paper. Scheduled to appear in ApJ vol. 613 (September 2004). High-resolution version available from http://www.nd.edu/~pgarnavi/sn99by/sn99by.p

    An Atlas of Spectrophotometric Landolt Standard Stars

    Full text link
    We present CCD observations of 102 Landolt standard stars obtained with the R-C spectrograph on the CTIO 1.5 m telescope. Using stellar atmosphere models we have extended the flux points to our six spectrophotometric secondary standards, in both the blue and the red, allowing us to produce flux-calibrated spectra that span a wavelength range from 3050 \AA to 1.1 \micron. Mean differences between UBVRI spectrophotometry computed using Bessell's standard passbands and Landolt's published photometry is found to be 1% or less. Observers in both hemispheres will find these spectra useful for flux-calibrating spectra and through the use of accurately constructed instrumental passbands be able to compute accurate corrections to bring instrumental magnitudes to any desired standard photometric system (S-corrections). In addition, by combining empirical and modeled spectra of the Sun, Sirius and Vega, we calculate and compare synthetic photometry to observed photometry taken from the literature for these three stars.Comment: Added referee's comments, minor corrections, replaced Table 1

    Multi-color Optical and NIR Light Curves of 64 Stripped-Envelope Core-Collapse Supernovae

    Full text link
    We present a densely-sampled, homogeneous set of light curves of 64 low redshift (z < 0.05) stripped-envelope supernovae (SN of type IIb, Ib, Ic and Ic-bl). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins in Arizona, with the optical FLWO 1.2-m and the near-infrared PAIRITEL 1.3-m telescopes. Our dataset consists of 4543 optical photometric measurements on 61 SN, including a combination of UBVRI, UBVr'i', and u'BVr'i', and 2142 JHKs near-infrared measurements on 25 SN. This sample constitutes the most extensive multi-color data set of stripped-envelope SN to date. Our photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SN were observed spectroscopically by the CfA SN group, and the spectra are presented in a companion paper (Modjaz et al. 2014). A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SN will be presented in a follow-up paper.Comment: 26 pages, 17 figures, 8 tables. Revised version resubmitted to ApJ Supplements after referee report. Additional online material is available through http://cosmo.nyu.edu/SNYU

    Evolution of the Reverse Shock Emission from SNR 1987A

    Full text link
    We present new (2004 July) G750L and G140L Space Telescope Imaging Spectrograph (STIS) data of the H-alpha and Ly-alpha emission from supernova remnant (SNR) 1987A. With the aid of earlier data, from Oct 1997 to Oct 2002, we track the local evolution of Ly-alpha emission and both the local and global evolution of H-alpha emission. In addition to emission which we can clearly attribute to the surface of the reverse shock, we also measure comparable emission, in both H-alpha and Ly-alpha, which appears to emerge from supernova debris interior to the surface. New observations taken through slits positioned slightly eastward and westward of a central slit show a departure from cylindrical symmetry in the H-alpha surface emission. Using a combination of old and new observations, we construct a light curve of the total H-alpha flux, F, from the reverse shock, which has increased by a factor ~ 4 over about 8 years. However, due to large systematic uncertainties, we are unable to discern between the two limiting behaviours of the flux - F ~ t (self-similar expansion) and F ~ t^5 (halting of the reverse shock). Such a determination is relevant to the question of whether the reverse shock emission will vanish in less than about 7 years (Smith et al. 2005). Future deep, low- or moderate-resolution spectra are essential for accomplishing this task.Comment: 28 pages, 12 figures. Accepted by Ap

    High-Velocity Line Forming Regions in the Type Ia Supernova 2009ig

    Get PDF
    We report measurements and analysis of high-velocity (> 20,000 km/s) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between -14d and +13d with respect to the time of maximum B-band luminosity. We identify lines of Si II, Si III, S II, Ca II and Fe II that produce both high-velocity (HVF) and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M_B = -19.46 mag and Delta_m15 (B) = 0.90 mag). Similarly, the Si II lambda_6355 velocity at the time of B-max is greater than "normal" for a SN Ia, but it is not extreme (v_Si = 13,400 km/s). The -14d and -13d spectra clearly resolve HVF from Si II lambda_6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From -12d to -6d, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8,000 km/s. After -6d all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SN Ia show evidence for HVF from multiple lines in spectra obtained before -10d, and we compare the spectra of SN 2009ig to observations of other SN. We show that each of the unusual line profiles for Si II lambda_6355 found in early-time spectra of SN Ia correlate to a specific phase in a common development sequence from HVF to PVF.Comment: 19 pages, 11figures, 4 tables, submitted to Ap

    Preliminary Spectral Analysis of the Type II Supernova 1999em

    Get PDF
    We have calculated fast direct spectral model fits to two early-time spectra of the Type-II plateau SN 1999em, using the SYNOW synthetic spectrum code. The first is an extremely early blue optical spectrum and the second a combined HST and optical spectrum obtained one week later. Spectroscopically this supernova appears to be a normal Type II and these fits are in excellent agreement with the observed spectra. Our direct analysis suggests the presence of enhanced nitrogen. We have further studied these spectra with the full NLTE general model atmosphere code PHOENIX. While we do not find confirmation for enhanced nitrogen (nor do we rule it out), we do require enhanced helium. An even more intriguing possible line identification is complicated Balmer and He I lines, which we show falls naturally out of the detailed calculations with a shallow density gradient. We also show that very early spectra such as those presented here combined with sophisticated spectral modeling allows an independent estimate of the total reddening to the supernova, since when the spectrum is very blue, dereddening leads to changes in the blue flux that cannot be reproduced by altering the ``temperature'' of the emitted radiation. These results are extremely encouraging since they imply that detailed modeling of early spectra can shed light on both the abundances and total extinction of SNe II, the latter improving their utility and reliability as distance indicators.Comment: to appear in ApJ, 2000, 54

    Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

    Get PDF
    We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 < z < 0.62. With previous data from our High-Z Supernova Search Team, this expanded set of 16 high-redshift supernovae and 34 nearby supernovae are used to place constraints on the Hubble constant (H_0), the mass density (Omega_M), the cosmological constant (Omega_Lambda), the deceleration parameter (q_0), and the dynamical age of the Universe (t_0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (Omega_M=0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Omega_Lambda > 0) and a current acceleration of the expansion (i.e., q_0 < 0). With no prior constraint on mass density other than Omega_M > 0, the spectroscopically confirmed SNe Ia are consistent with q_0 <0 at the 2.8 sigma and 3.9 sigma confidence levels, and with Omega_Lambda >0 at the 3.0 sigma and 4.0 sigma confidence levels, for two fitting methods respectively. Fixing a ``minimal'' mass density, Omega_M=0.2, results in the weakest detection, Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior (Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7 sigma to 8 sigma level. We estimate the size of systematic errors, including evolution, extinction, sample selection bias, local flows, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Omega_Lambda=0 and q_0 > 0.Comment: 36 pages, 13 figures, 3 table files Accepted to the Astronomical Journa
    • 

    corecore