24,199 research outputs found

    Vacuum Polarization on the Schwarzschild Metric with a Cosmic String

    Get PDF
    We consider the problem of the renormalization of the vacuum polarization in a symmetry space-time with axial but not spherical symmetry, Schwarzschild space-time threaded by an infinite straight cosmic string. Unlike previous calculations, our framework to compute the renormalized vacuum polarization does not rely on special properties of Legendre functions, but rather has been developed in a way that we expect to be applicable to Kerr space-time

    Precise determination of the lattice spacing in full lattice QCD

    Full text link
    We compare three different methods to determine the lattice spacing in lattice QCD and give results from calculations on the MILC ensembles of configurations that include the effect of uu, dd and ss sea quarks. It is useful, for ensemble to ensemble comparison, to express the results as giving a physical value for r1r_1, a parameter from the heavy quark potential. Combining the three methods gives a value for r1r_1 in the continuum limit of 0.3133(23)(3) fm. Using the MILC values for r0/r1r_0/r_1, this corresponds to a value for the r0r_0 parameter of 0.4661(38) fm. We also discuss how to use the ηs\eta_s for determining the lattice spacing and tuning the ss-quark mass accurately, by giving values for mηsm_{\eta_s} (0.6858(40) GeV) and fηsf_{\eta_s} (0.1815(10) GeV).Comment: 15 page

    Catching on to concatenation : evidence for prepollination intrasexual selection in plants

    Get PDF
    [from introduction] Darwin (1871) proposed the mechanism of sexual selection to explain the extreme traits, secondary sex characters, seen primarily in male animals for either display or competition. These elaborate traits for attracting members of the opposite sex or competing for access to mates, inter- and intra-sexual selection, respectively, would increase the mating success of individuals but may reduce individual survival. Sexual selection has traditionally been associated with motile, dioecious animals that have well-developed sensory abilities and has long been viewed as absent as a mode of selection in plants (Grant, 1995). However, since the 1980s, several workers have argued that sexual selection is applicable to plants and should be considered as a factor in floral evolution (Skogsmyr & Lankinen, 2002). Opponents such as Grant (1995) point to incompatibility with Darwin’s usage, hermaphroditism, the absence of obvious secondary sex characters and the apparent absence of female choice in plants (Skogsmyr & Lankinen, 2002; Moore & Pannell, 2011). Proponents, however, argue that historical definitions should be expanded to explain modern evidence and that sexual selection can, in principle, occur in hermaphrodites and hence play a role in the evolution of floral traits. The latter view is supported by a recent study by Cocucci et al. (this issue of New Phytologist, pp. 280–286) which demonstrates intra-sexual selection in plants via direct male–male competition between the pollinaria of milkweeds for optimal attachment sites on pollinators to ensure subsequent pollinium deposition. This is the first example of male–male competition resulting in secondary sex characters in hermaphrodite plants, highlighting the possibility of overlooked mechanisms of sexual selection in plants

    Mimics and magnets : The importance of color and ecological facilitation in floral deception

    Get PDF
    Plants that lack floral rewards can attract pollinators if they share attractive floral signals with rewarding plants. These deceptive plants should benefit from flowering in close proximity to such rewarding plants, because pollinators are locally conditioned on floral signals of the rewarding plants (mimic effect) and because pollinators are more abundant close to rewarding plants (magnet effect). We tested these ideas using the non-rewarding South African plant Eulophia zeyheriana (Orchidaceae) as a study system. Field observations revealed that E. zeyheriana is pollinated solely by solitary bees belonging to a single species of Lipotriches (Halictidae) that appears to be closely associated with the flowers of Wahlenbergia cuspidata (Campanulaceae), a rewarding plant with which the orchid is often sympatric. The pale blue color of the flowers of E. zeyheriana differs strongly from flowers of its congeners, but is very similar to that of flowers of W. cuspidata. Analysis of spectral reflectance patterns using a bee vision model showed that bees are unlikely to be able to distinguish the two species in terms of flower color. A UV-absorbing sunscreen was applied to the flowers of the orchid in order to alter their color, and this resulted in a significant decline in pollinator visits, thus indicating the importance of flower color for attraction of Lipotriches bees. Pollination success in the orchid was strongly affected by proximity to patches of W. cuspidata. This was evident from one of two surveys of natural populations of the orchid, as well as experiments in which we translocated inflorescences of the orchid either into patches of W. cuspidata or 40 m outside such patches. Flower color and location of E. zeyheriana plants relative to rewarding magnet patches are therefore key components of the exploitation by this orchid of the relationship between W. cuspidata and Lipotriches bee pollinators

    Unravelling the Dodecahedral Spaces

    Full text link
    The hyperbolic dodecahedral space of Weber and Seifert has a natural non-positively curved cubulation obtained by subdividing the dodecahedron into cubes. We show that the hyperbolic dodecahedral space has a 6-sheeted irregular cover with the property that the canonical hypersurfaces made up of the mid-cubes give a very short hierarchy. Moreover, we describe a 60-sheeted cover in which the associated cubulation is special. We also describe the natural cubulation and covers of the spherical dodecahedral space (aka Poincar\'e homology sphere).Comment: 15 pages + 6 pages appendix, 7 figures, 4 table

    Non-substitutional single-atom defects in the Ge_(1-x)Sn_x alloy

    Full text link
    Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnessing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect (βSn\beta-Sn), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the β\beta defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these β\beta defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.Comment: 12 pages, 1 table, 16 figure

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version
    corecore