19 research outputs found

    Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the <it>Bacillus subtilis </it>spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen <it>Helicobater acinonychis</it>. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen <it>H. pylori</it>. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections.</p> <p>Results</p> <p>We expressed UreA from <it>H. acinonychis </it>on the <it>B. subtilis </it>spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 × 10<sup>3 </sup>recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 × 10<sup>3 </sup>recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed.</p> <p>Conclusion</p> <p>UreA was efficiently expressed on the spore coat of <it>B. subtilis </it>when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.</p

    The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore

    No full text
    Abstract Background Bacillus subtilis spores can be used for presentation of heterologous proteins. Two main approaches have been developed, the recombinant one, requiring modification of bacterial genome to express a protein of interest as a fusion with spore-coat protein, and non-recombinant, based on the adsorption of a heterologous protein onto the spore. So far only single proteins have been displayed on the spore surface. Results We have used a combined approach to adsorb and display FliD protein of Clostridium difficile on the surface of recombinant IL-2-presenting spores. Such spores presented FliD protein with efficiency comparable to FliD-adsorbed spores produced by wild-type 168 strain and elicited FliD-specific immune response in intranasally immunized mice. Conclusions Our results indicate that such dual display technology may be useful in creation of spores simultaneously presenting adjuvant and antigen molecules. Regarding the characteristics of elicited immune response it seems plausible that such recombinant IL-2-presenting spores with adsorbed FliD protein might be an interesting candidate for vaccine against infections with Clostridium difficile

    LC-MS/MS Determination of Isoprostanes in Plasma Samples Collected from Mice Exposed to Doxorubicin or Tert-Butyl Hydroperoxide

    Get PDF
    Isoprostanes are stable products of arachidonic acid peroxidation and are regarded as the most reliable markers of oxidative stress in vivo. Here we describe the LC-MS/MS procedure enabling simultaneous determination of four regioisomers (8-iso prostaglandin F2α, 8-iso-15(R)-prostaglandin F2α, 11β-prostaglandin F2α, 15(R)-prostaglandin F2α) in plasma samples collected from mice. The four plasma isoprostanes are determined by LC–ESI-MS/MS with deuterated 8-iso-PGF2α-d4 as an internal standard (I.S.). For plasma samples spiked with the isoprostanes at a level of 200 pg/mL each, the method imprecision has been below 7.1% and mean inaccuracy equaled 8.7%. The applicability of the proposed approach has been verified by the assessment of changes in isoprostane levels in plasma samples derived from mice exposed to tert-butyl hydroperoxide (TBHP), a model inducer of oxidative stress, or to antitumor drug doxorubicin (DOX) known for potent stimulation of redox cycling. Compared to the control group of mice, both oxidative stress inducers tested increased the levels of three out of four isoprostanes in exposed animals; 11β-prostaglandin F2α being the exception. The greatest rise was observed in the case of 15(R)-prostaglandin F2α, by about 50% and 70% in plasma samples derived from mice exposed to DOX and TBHP, respectively

    The choice of the anchoring protein influences the interaction of recombinant Bacillus spores with the immune system

    No full text
    The technology of display of heterologous proteins on the surface of Bacillus subtilis spores enables use of these structures as carriers of antigens for mucosal vaccination. Currently, there are no technical possibilities to predict whether a designed fusion will be efficiently displayed on the spore surface and how such recombinant spores will interact with cells of the immune system. In this study, we compared four variants of B. subtilis spores presenting a fragment of a FliD protein from Clostridium difficile in fusion with CotB, CotC, CotG or CotZ spore coat proteins. We show that these spores promote their own phagocytosis and activate both, the J774 macrophages and JAWSII dendritic cells of murine cell lines. Moreover, we used these spores for mucosal immunization of mice. We conclude that the observed effects vary with the type of displayed FliD-spore coat protein fusion and seem to be mostly independent of its abundance and localization in the spore coat structure

    LC-MS/MS Determination of Isoprostanes in Plasma Samples Collected from Mice Exposed to Doxorubicin or Tert-Butyl Hydroperoxide

    Get PDF
    Isoprostanes are stable products of arachidonic acid peroxidation and are regarded as the most reliable markers of oxidative stress in vivo. Here we describe the LC-MS/MS procedure enabling simultaneous determination of four regioisomers (8-iso prostaglandin F2α, 8-iso-15(R)-prostaglandin F2α, 11β-prostaglandin F2α, 15(R)-prostaglandin F2α) in plasma samples collected from mice. The four plasma isoprostanes are determined by LC–ESI-MS/MS with deuterated 8-iso-PGF2α-d4 as an internal standard (I.S.). For plasma samples spiked with the isoprostanes at a level of 200 pg/mL each, the method imprecision has been below 7.1% and mean inaccuracy equaled 8.7%. The applicability of the proposed approach has been verified by the assessment of changes in isoprostane levels in plasma samples derived from mice exposed to tert-butyl hydroperoxide (TBHP), a model inducer of oxidative stress, or to antitumor drug doxorubicin (DOX) known for potent stimulation of redox cycling. Compared to the control group of mice, both oxidative stress inducers tested increased the levels of three out of four isoprostanes in exposed animals; 11β-prostaglandin F2α being the exception. The greatest rise was observed in the case of 15(R)-prostaglandin F2α, by about 50% and 70% in plasma samples derived from mice exposed to DOX and TBHP, respectively

    Mucosal adjuvant activity of IL-2 presenting spores of bacillus subtilis in a murine model of Helicobacter pylori vaccination.

    No full text
    The endospores of Bacillus subtilis are now widely used as a platform for presentation of heterologous proteins and due to their safety record and high resistance to harsh environmental conditions can be considered as potential vehicles for oral vaccination. In this research we show that recombinant B. subtilis spores presenting a fragment of the Helicobacter acinonychis UreB protein and expressing the ureB gene under vegetative promoter elicit a strong cellular immune response in orally immunized mice when co-administered with spores presenting IL-2. We show for the first time the successful application of two types of recombinant spores, one carrying an antigen and the other an adjuvant, in a single oral immunization

    Germination of spore suspensions in l-alanine and AGFK solutions.

    No full text
    <p>Spores prepared from cells of 168 (diamonds) and BKH108 (squares) grown in DS medium were heat activated and subsequently incubated in 10 mM Tris-HCl (pH 7.5) with 10 mM l-alanine or with 3.3 mM l-asparaginate, 5.6 mM d-glucose, 5.6 mM d-fructose, and 10 mM KCl (AGFK). Germination was followed by measuring the <i>A</i><sub>600</sub> of the spore suspension.</p
    corecore