5 research outputs found

    Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit.

    No full text
    BACKGROUND AND PURPOSE: One of the newer audit modalities operated by the International Atomic Energy Agency (IAEA) involves audits of treatment planning systems (TPS) in radiotherapy. The main focus of the audit is the dosimetry verification of the delivery of a radiation treatment plan for three-dimensional (3D) conformal radiotherapy using high energy photon beams. The audit has been carried out in eight European countries - Estonia, Hungary, Latvia, Lithuania, Serbia, Slovakia, Poland and Portugal. The corresponding results are presented. MATERIAL AND METHODS: The TPS audit reviews the dosimetry, treatment planning and radiotherapy delivery processes using the \u27end-to-end\u27 approach, i.e. following the pathway similar to that of the patient, through imaging, treatment planning and dose delivery. The audit is implemented at the national level with IAEA assistance. The national counterparts conduct the TPS audit at local radiotherapy centres through on-site visits. TPS calculated doses are compared with ion chamber measurements performed in an anthropomorphic phantom for eight test cases per algorithm/beam. A set of pre-defined agreement criteria is used to analyse the performance of TPSs. RESULTS: TPS audit was carried out in 60 radiotherapy centres. In total, 190 data sets (combination of algorithm and beam quality) have been collected and reviewed. Dosimetry problems requiring interventions were discovered in about 10% of datasets. In addition, suboptimal beam modelling in TPSs was discovered in a number of cases. CONCLUSIONS: The TPS audit project using the IAEA methodology has verified the treatment planning system calculations for 3D conformal radiotherapy in a group of radiotherapy centres in Europe. It contributed to achieving better understanding of the performance of TPSs and helped to resolve issues related to imaging, dosimetry and treatment planning

    EFOMP policy statement 18: Medical physics education for the non-physics healthcare professions

    No full text
    Although Medical Physics educators have historically contributed to the education of the non-physics healthcare professions, their role was not studied in a systematic manner. In 2009, EFOMP set up a group to research the issue. In their first paper, the group carried out an extensive literature review regarding physics teaching for the non-physics healthcare professions. Their second paper reported the results of a pan-European survey of physics curricula delivered to the healthcare professions and a Strengths-Weaknesses-Opportunities-Threats (SWOT) audit of the role. The group's third paper presented a strategic development model for the role, based on the SWOT data. A comprehensive curriculum development model was subsequently published, whilst plans were laid to develop the present policy statement. This policy statement presents mission and vision statements for Medical Physicists teaching non-physics users of medical devices and physical agents, best practices for teaching non-physics healthcare professionals, a stepwise process for curriculum development (content, method of delivery and assessment), and summary recommendations based on the aforementioned research studies

    On dosimetric characteristics of detectors for relative dosimetry in small fields: a multicenter experimental study

    No full text
    Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483. Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTM or Varian TrueBeamTM linear accelerators, were used. Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson’s correlation coefficientr 2 ), it was found that 100% of the data fulfill the criteria r 2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points(98.2%)satisfied the 0.1% criterion for leakage. Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage)
    corecore