10 research outputs found

    Longitudinal cohort study investigating neurodevelopmental and socioemotional outcomes in school-entry aged children after open heart surgery in Australia and New Zealand: the NITRIC follow-up study protocol

    Full text link
    Introduction: Despite growing awareness of neurodevelopmental impairments in children with congenital heart disease (CHD), there is a lack of large, longitudinal, population-based cohorts. Little is known about the contemporary neurodevelopmental profile and the emergence of specific impairments in children with CHD entering school. The performance of standardised screening tools to predict neurodevelopmental outcomes at school age in this high-risk population remains poorly understood. The NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial randomised 1371 children <2 years of age, investigating the effect of gaseous nitric oxide applied into the cardiopulmonary bypass oxygenator during heart surgery. The NITRIC follow-up study will follow this cohort annually until 5 years of age to assess outcomes related to cognition and socioemotional behaviour at school entry, identify risk factors for adverse outcomes and evaluate the performance of screening tools. Methods and analysis: Approximately 1150 children from the NITRIC trial across five sites in Australia and New Zealand will be eligible. Follow-up assessments will occur in two stages: (1) annual online screening of global neurodevelopment, socioemotional and executive functioning, health-related quality of life and parenting stress at ages 2–5 years; and (2) face-to-face assessment at age 5 years assessing intellectual ability, attention, memory and processing speed; fine motor skills; language and communication; and socioemotional outcomes. Cognitive and socioemotional outcomes and trajectories of neurodevelopment will be described and demographic, clinical, genetic and environmental predictors of these outcomes will be explored. Ethics and dissemination: Ethical approval has been obtained from the Children’s Health Queensland (HREC/20/QCHQ/70626) and New Zealand Health and Disability (21/NTA/83) Research Ethics Committees. The findings will inform the development of clinical decision tools and improve preventative and intervention strategies in children with CHD. Dissemination of the outcomes of the study is expected via publications in peer-reviewed journals, presentation at conferences, via social media, podcast presentations and medical education resources, and through CHD family partners.Trial registration numberThe trial was prospectively registered with the Australian New Zealand Clinical Trials Registry as ‘Gene Expression to Predict Long-Term Neurodevelopmental Outcome in Infants from the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) Study – A Multicentre Prospective Trial’. Trial registration: ACTRN12621000904875

    Post-Concussion Symptoms, Cognition and Brain Connectivity in an Australian Undergraduate Population: A Quantitative Electroencephalography Study

    No full text
    Background: An estimated 99 in 100,000 people experience a traumatic brain injury (TBI), with 85% being mild (mTBI) in nature. The Post-Concussion Symptom Scale (PCSS), is a reliable and valid measure of post-mTBI symptoms; however, diagnostic specificity is challenging due to high symptom rates in the general population. Understanding the neurobiological characteristics that distinguish high and low PCSS raters may provide further clarification on this phenomenon. Aim: To explore the neurobiological characteristics of post-concussion symptoms through the association between PCSS scores, brain network connectivity (using quantitative electroencephalography; qEEG) and cognition in undergraduates. Hypotheses: high PCSS scorers will have (1) more network dysregulation and (2) more cognitive dysfunction compared to the low PCSS scorers. Methods: A sample of 40 undergraduates were divided into high and low PCSS scorers. Brain connectivity was measured using qEEG, and cognition was measured via neuropsychological measures of sustained attention, inhibition, immediate attention, working memory, processing speed and inhibition/switching. Results: Contrary to expectations, greater frontoparietal network dysregulation was seen in the low PCSS score group (p = 0.003). No significant difference in cognitive dysfunction was detected between high and low PCSS scorers. Post-hoc analysis in participants who had experienced mTBI revealed greater network dysregulation in those reporting a more recent mTBI. Conclusions: Measuring post-concussion symptoms alone is not necessarily informative about changes in underlying neural mechanisms. In an exploratory subset analysis, brain network dysregulation appears to be greater in the early post-injury phase compared to later. Further analysis of underlying PCSS constructs and how to measure these in a non-athlete population and clinical samples is warranted

    In-person versus online delivery of a behavioral sleep intervention (Sleeping Sound©) for children with ADHD: protocol for a parallel-group, non-inferiority, randomized controlled trial

    No full text
    Abstract Background Children with Attention-Deficit/Hyperactivity Disorder (ADHD) often experience sleep difficulties such as difficulty initiating and maintaining sleep. Problem sleep may impact children’s daily functioning and behaviors and exacerbate ADHD symptoms. Most effective behavioral interventions to improve sleep are conducted in person, limiting accessibility to treatment for individuals in remote or rural communities or those who are unable to attend a clinic. This trial aims to assess the efficacy of delivering an established behavioral intervention online, Sleeping Sound with ADHD©, compared to a face-to-face delivery mode. Methods This parallel group, non-inferiority, randomized controlled trial (RCT) will include at least 68 children, aged 5–12 years old with ADHD. Families of children will be recruited from private developmental and psychological clinics and social media, within the state of Western Australia (WA). Once written informed consent and baseline questionnaires are completed, families are randomized to receive the behavioral intervention either in-person or online via Telehealth services. The intervention targets the assessment and management of reported sleep problems, through two individual consultations and a follow-up phone call with a trained clinician. The sleep outcomes assessed consist of a parent-reported sleep questionnaire and actigraphy. Discussion To the best of our knowledge, this is the first RCT to investigate sleep treatment modality for children with ADHD. If effective, clinicians can provide an evidence-based sleep intervention in an accessible manner. Trial registration ANZCTR, ACTRN12621001681842 . Registered 9 December 2021—Retrospectively registered

    Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production

    Get PDF
    Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of “two-compartment tumor metabolism” in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism

    Predicting outcome following mild traumatic brain injury: protocol for the longitudinal, prospective, observational Concussion Recovery (CREST) cohort study

    No full text
    Introduction Mild traumatic brain injury (mTBI) is a complex injury with heterogeneous physical, cognitive, emotional and functional outcomes. Many who sustain mTBI recover within 2weeks of injury; however, approximately 10%–20% of individuals experience mTBI symptoms beyond this ‘typical’ recovery timeframe, known as persistent post-concussion symptoms (PPCS). Despite increasing interest in PPCS, uncertainty remains regarding its prevalence in community-based populations and the extent to which poor recovery may be identified using early predictive markers. Objective (1) Establish a research dataset of people who have experienced mTBI and document their recovery trajectories; (2) Evaluate a broad range of novel and established prognostic factors for inclusion in a predictive model for PPCS. Methods and analysis The Concussion Recovery Study (CREST) is a prospective, longitudinal observational cohort study conducted in Perth, Western Australia. CREST is recruiting adults aged 18–65 from medical and community-based settings with acute diagnosis of mTBI. CREST will create a state-wide research dataset of mTBI cases, with data being collected in two phases. Phase I collates data on demographics, medical background, lifestyle habits, nature of injury and acute mTBI symptomatology. In Phase II, participants undergo neuropsychological evaluation, exercise tolerance and vestibular/ocular motor screening, MRI, quantitative electroencephalography and blood-based biomarker assessment. Follow-up is conducted via telephone interview at 1, 3, 6 and 12months after injury. Primary outcome measures are presence of PPCS and quality of life, as measured by the Post-Concussion Symptom Scale and the Quality of Life after Brain Injury questionnaires, respectively. Multivariate modelling will examine the prognostic value of promising factors

    Longitudinal cohort study investigating neurodevelopmental and socioemotional outcomes in school-entry aged children after open heart surgery in Australia and New Zealand: the NITRIC follow-up study protocol

    No full text
    Introduction: Despite growing awareness of neurodevelopmental impairments in children with congenital heart disease (CHD), there is a lack of large, longitudinal, population-based cohorts. Little is known about the contemporary neurodevelopmental profile and the emergence of specific impairments in children with CHD entering school. The performance of standardised screening tools to predict neurodevelopmental outcomes at school age in this high-risk population remains poorly understood. The NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial randomised 1371 children Methods and analysis: Approximately 1150 children from the NITRIC trial across five sites in Australia and New Zealand will be eligible. Follow-up assessments will occur in two stages: (1) annual online screening of global neurodevelopment, socioemotional and executive functioning, health-related quality of life and parenting stress at ages 2-5 years; and (2) face-to-face assessment at age 5 years assessing intellectual ability, attention, memory and processing speed; fine motor skills; language and communication; and socioemotional outcomes. Cognitive and socioemotional outcomes and trajectories of neurodevelopment will be described and demographic, clinical, genetic and environmental predictors of these outcomes will be explored. Ethics and dissemination: Ethical approval has been obtained from the Children's Health Queensland (HREC/20/QCHQ/70626) and New Zealand Health and Disability (21/NTA/83) Research Ethics Committees. The findings will inform the development of clinical decision tools and improve preventative and intervention strategies in children with CHD. Dissemination of the outcomes of the study is expected via publications in peer-reviewed journals, presentation at conferences, via social media, podcast presentations and medical education resources, and through CHD family partners. Trial registration number: The trial was prospectively registered with the Australian New Zealand Clinical Trials Registry as € Gene Expression to Predict Long-Term Neurodevelopmental Outcome in Infants from the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) Study - A Multicentre Prospective Trial'. Trial registration: ACTRN12621000904875.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore