3 research outputs found

    Characterization of pomegranate peel extracts obtained using different solvents and their effects on cell cycle and apoptosis in leukemia cells

    No full text
    Pomegranate (Punica granatum L.) has been used in traditional herbal medicine by several cultures as an anti-inflammatory, antioxidant, antihyperglycemic, and for treatment and prevention of cancer and other diseases. Different parts of the fruit, extraction methods, and solvents can define the chemical profile of the obtained extracts and their biological activities. This study aimed to characterize the chemical profile of peel extracts collected using different extraction solvents and their biological effects on the cell cycle and apoptosis of THP-1 leukemic cells. Aqueous extract presented the highest content of punicalagins (α pun = 562.26 ± 47.14 mg/L and β pun = 1,251.13 ± 22.21 mg/L) and the lowest content of ellagic acid (66.38 ± 0.21 mg/L), and it promoted a significant impairment of the cell cycle S phase. In fact, punicalagin-enriched fraction, but not an ellagic acid-enriched fraction, caused an S phase cell cycle arrest. All extracts increased the number of apoptotic cells. Punicalagin-enriched fraction increased the percentage of cells with fragmented DNA, which was intensified by ellagic acid combination. The treatment combining punicalagin and ellagic acid fractions increased the apoptotic cleaved PARP1 protein and reduced the activation of the growth-related mTOR pathway. Thus, these results evidence that solvent choice is critical for the phenolic compounds profile of pomegranate peel extracts and their biological activities

    Interactome analysis of the human Cap-specific mRNA (nucleoside-2 '-O-)-methyltransferase 1 (hMTr1) protein

    No full text
    In a previous study, we have shown that the gene promoter of a protein termed KIAA0082 is regulated by interferon and that this protein interacts with the RNA polymerase II. It has been subsequently shown that KIAA0082 is the human cap-specific messenger RNA (mRNA) (nucleoside-2 '-O-)-methyltransferase 1 (hMTr1), which catalyzes methylation of the 2 '-O-ribose of the first nucleotide of capped mRNAs. Pre-mRNAs are cotranscriptionally processed, requiring coordinate interactions or dissociations of hundreds of proteins. hMTr1 potentially binds to the 5 '-end of the whole cellular pre-mRNA pool. Besides, it contains a WW protein interaction domain and thus is expected to be associated with several proteins. In this current study, we determined the composition of complexes isolated by hMTr1 immunoprecipitation from HEK293 cellular extracts. Consistently, a large set of proteins that function in pre-mRNA maturation was identified, including splicing factors, spliceosome-associated proteins, RNA helicases, heterogeneous nuclear ribonucleoproteins (HNRNPs), RNA-binding proteins and proteins involved in mRNA 5 '- and 3 '-end processing, forming an extensive interaction network. In total, 137 proteins were identified in two independent experiments, and some of them were validated by immunoblotting and immunofluorescence. Besides, we further characterized the nature of several hMTr1 interactions, showing that some are RNA dependent, including PARP1, ILF2, XRCC6, eIF2 alpha, and NCL, and others are RNA independent, including FXR1, NPM1, PPM1B, and PRMT5. The data presented here are consistent with the important role played by hMTr1 in pre-mRNA synthesis.120455975611CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulosem informação447553/2014-32012/13558-7sem informaçãoPAPES - Programa De Apoio À Pesquisa Estratégica Em Saúde (Fiocru

    Protective effects of beet (beta vulgaris) leaves extract against oxidative stress in endothelial cells in vitro

    No full text
    Beetroot is an herb used worldwide as a food product, raw material for food industry, ethanol production and source of food coloring. Beet leaves are an unconventional food with antioxidant properties, which might neutralize reactive oxygen species (ROS) induced by oxidized Low-Density Lipoprotein (LDL) present in dyslipidemias. This study aimed to elucidate the effects of beet leaves on the suppression of LDL oxidative processes. Beet leaves extract was produced, characterized, and tested for its antioxidant capacity using endothelial cells in vitro. A model of human umbilical vein endothelial cells was used in various tests, including viability assay, molecular analysis of antioxidant genes, ROS labeling, and macrophage adhesion assay. The extract improved the antioxidative protection of endothelial cells against different agents including oxidized LDL-cholesterol and H2O2. It acted on ROS directly due to its high content of natural antioxidants, but also due to the activation and improvement of cellular defenses such as Superoxide dismutase 1, Superoxide dismutase 2, and catalase. The inhibition of LDL-mediated oxidative effects on endothelial cells may turn this unconventional food a functional food with great potential for phytotherapy of atherosclerosis as an adjuvant for medicinal treatmentsCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo303568/2016‐0; 447553/2014‐32012/13558‐7; 2013/04304‐4; 2016/06457‐0; 2018/14818‐
    corecore