723 research outputs found
Off-Diagonal Long-Range Order, Restricted Gauge Transformations, and Aharonov-Bohm Effect in Conductors
The Hamiltonian describing a conductor surrounding an external magnetic field
contains a nonvanishing vector potential in the volume accessible to the
electrons and nuclei of which the conductor is made. That vector potential
cannot be removed by a gauge transformation. Nevertheless, a macroscopic normal
conductor can experience no Aharonov-Bohm effect. That is proved by assuming
only that a normal conductor lacks off-diagonal long-range order (ODLRO). Then
by restricting the Hilbert space to density matrices which lack ODLRO, it is
possible to introduce a restricted gauge transformation that removes the
interaction of the conductor with the vector potential.Comment: Editing errors are corrected. One was slightly misleadin
Topology, Locality, and Aharonov-Bohm Effect with Neutrons
Recent neutron interferometry experiments have been interpreted as
demonstrating a new topological phenomenon similar in principle to the usual
Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the
electron's charge. We show that the new phenomenon, called Scalar AB (SAB)
effect, follows from an ordinary local interaction, contrary to the usual AB
effect, and we argue that the SAB effect is not a topological effect by any
useful definition. We find that SAB actually measures an apparently novel spin
autocorrelation whose operator equations of motion contain the local torque in
the magnetic field. We note that the same remarks apply to the Aharonov-Casher
effect.Comment: 9 page
Task planning and control synthesis for robotic manipulation in space applications
Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets
Levinson theorem for Aharonov-Bohm scattering in two dimensions
We apply the recently generalized Levinson theorem for potentials with
inverse square singularities [Sheka et al, Phys.Rev.A, v.68, 012707 (2003)] to
Aharonov-Bohm systems in two-dimensions. By this theorem, the number of bound
states in a given m-th partial wave is related to the phase shift and the
magnetic flux. The results are applied to 2D soliton-magnon scattering.Comment: 5 pages (REVTeX
Darwin-Lagrangian Analysis for the Interaction of a Point Charge and a Magnet: Considerations Related to the Controversy Regarding the Aharonov-Bohm and Aharonov-Casher Phase Shifts
The classical electromagnetic interaction of a point charge and a magnet is
discussed by first calculating the interaction of point charge with a simple
model magnetic moment and then suggesting a multiparticle limit. The Darwin
Lagrangian is used to analyze the electromagnetic behavior of the model
magnetic moment (composed of two oppositely charged particles of different mass
in an initially circular orbit) interacting with a passing point charge. The
changing mangetic moment is found to put a force back on a passing charge; this
force is of order 1/c^2 and depends upon the magnitude of the magnetic moment.
It is suggested that in the limit of a multiparticle magnetic toroid, the
electric fields of the passing charge are screened out of the body of the
magnet while the magnetic fields penetrate into the magnet. This is consistent
with our understanding of the penetration of electromagnetic velocity fields
into ohmic conductors. Conservation laws are discussed. The work corresponds to
a classical electromagnetic analysis of the interaction which is basic to
understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase
shifts and represents a refutation of the suggestions of Aharonov, Pearle, and
Vaidman.Comment: 33 page
Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem
We consider the numbers arising in the problem of normal ordering of
expressions in canonical boson creation and annihilation operators. We treat a
general form of a boson string which is shown to be associated with
generalizations of Stirling and Bell numbers. The recurrence relations and
closed-form expressions (Dobiski-type formulas) are obtained for these
quantities by both algebraic and combinatorial methods. By extensive use of
methods of combinatorial analysis we prove the equivalence of the
aforementioned problem to the enumeration of special families of graphs. This
link provides a combinatorial interpretation of the numbers arising in this
normal ordering problem.Comment: 10 pages, 5 figure
The Noncommutative Anandan's Quantum Phase
In this work we study the noncommutative nonrelativistic quantum dynamics of
a neutral particle, that possesses permanent magnetic and electric dipole
momenta, in the presence of an electric and magnetic fields. We use the
Foldy-Wouthuysen transformation of the Dirac spinor with a non-minimal coupling
to obtain the nonrelativistic limit. In this limit, we will study the
noncommutative quantum dynamics and obtain the noncommutative Anandan's
geometric phase. We analyze the situation where magnetic dipole moment of the
particle is zero and we obtain the noncommutative version of the
He-McKellar-Wilkens effect. We demonstrate that this phase in the
noncommutative case is a geometric dispersive phase. We also investigate this
geometric phase considering the noncommutativity in the phase space and the
Anandan's phase is obtained.Comment: 15 pages, revtex4, version to appear in Physical Review
- …