185 research outputs found

    Fashion, Cooperation, and Social Interactions

    Full text link
    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people's cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.Comment: 21 pages, 12 figure

    The Maintenance of Traditions in Marmosets: Individual Habit, Not Social Conformity? A Field Experiment

    Get PDF
    Social conformity is a cornerstone of human culture because it accelerates and maintains the spread of behaviour within a group. Few empirical studies have investigated the role of social conformity in the maintenance of traditions despite an increasing body of literature on the formation of behavioural patterns in non-human animals. The current report presents a field experiment with free-ranging marmosets (Callithrix jacchus) which investigated whether social conformity is necessary for the maintenance of behavioural patterns within groups or whether individual effects such as habit formation would suffice.Using a two-action apparatus, we established alternative behavioural patterns in six family groups composed of 36 individuals. These groups experienced only one technique during a training phase and were thereafter tested with two techniques available. The monkeys reliably maintained the trained method over a period of three weeks, despite discovering the alternative technique. Three additional groups were given the same number of sessions, but those 21 individuals could freely choose the method to obtain a reward. In these control groups, an overall bias towards one of the two methods was observed, but animals with a different preference did not adjust towards the group norm. Thirteen of the fifteen animals that discovered both techniques remained with the action with which they were initially successful, independent of the group preference and the type of action (Binomial test: exp. proportion: 0.5, p<0.01).The results indicate that the maintenance of behavioural patterns within groups 1) could be explained by the first rewarded manipulation and subsequent habit formation and 2) do not require social conformity as a mechanism. After an initial spread of a behaviour throughout a group, this mechanism may lead to a superficial appearance of conformity without the involvement of such a socially and cognitively complex mechanism. This is the first time that such an experiment has been conducted with free-ranging primates

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Wild redfronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques

    Get PDF
    Recent research has claimed that traditions are not a unique feature of human culture, but that they can be found in animal societies as well. However, the origins of traditions in animals studied in the wild are still poorly understood. To contribute comparative data to begin filling this gap, we conducted a social diffusion experiment with four groups of wild redfronted lemurs (Eulemur rufifrons). We used a ‘two-option’ feeding box, where these Malagasy primates could either pull or push a door to get access to a fruit reward to study whether and how these two behavioural traits spread through the groups. During a pre-training phase, two groups were presented with boxes in which one technique was blocked, whereas two groups were presented with unblocked boxes. During a subsequent unconstrained phase, all four groups were confronted with unblocked boxes. Nearly half of the study animals were able to learn the new feeding skill and individuals who observed others needed fewer unsuccessful task manipulations until their first successful action. Animals in the two groups with pre-training also discovered the corresponding alternative technique but preferred the seeded technique. Interestingly, animals in the two groups without pre-training discovered both techniques, and one group developed a group preference for one technique whereas the other did not. In all groups, some animals also scrounged food rewards. In conclusion, redfronted lemurs appear to use social information in acquiring a novel task, and animals in at least in one group without training developed a group preference for one technique, indicating that they have the potential to develop behavioural traditions and conformity
    corecore