85 research outputs found

    Terrestrial Laser Scanner Resolution: Numerical Simulations and Experiments on Spatial Sampling Optimization

    Get PDF
    An empirical approach is proposed in order to evaluate the largest spot spacing allowing the appropriate resolution to recognize the required surface details in a terrestrial laser scanner (TLS) survey. The suitable combination of laser beam divergence and spot spacing for the effective scanning angular resolution has been studied by numerical simulation experiments with an artificial target taken from distances between 25 m and 100 m, and observations of real surfaces. The tests have been performed by using the Optech ILRIS-3D instrument. Results show that the discrimination of elements smaller than a third of the beam divergence (D) is not possible and that the ratio between the used spot-spacing (ss) and the element size (TS) is linearly related to the acquisition range. The zero and first order parameters of this linear trend are computed and used to solve for the maximum efficient ss at defined ranges for a defined TS. Despite the fact that the parameters are obtained for the Optech ILRIS-3D scanner case, and depend on its specific technical data and performances, the proposed method has general validity and it can be used to estimate the corresponding parameters for other instruments. The obtained results allow the optimization of a TLS survey in terms of acquisition time and surface details recognition

    Automated DEM extraction in digital aerial photogrammetry: precisions and validation for mass movement monitoring

    Get PDF
    Automated procedures for photogrammetric image processing and Digital Elevation Models (DEM) extraction yield high precision terrain models in a short time, reducing manual editing; their accuracy is strictly related to image quality and terrain features. After an analysis of the performance of the Digital Photogrammetric Workstation (DPW) 770 Helava, the paper compares DEMs derived from different surveys and registered in the same reference system. In the case of stable area, the distribution of height residuals, their mean and standard deviation values, indicate that the theoretical accuracy is achievable automatically when terrain is characterized by regular morphology. Steep slopes, corrugated surfaces, vegetation and shadows can degrade results even if manual editing procedures are applied. The comparison of multi-temporal DEMs on unstable areas allows the monitoring of surface deformation and morphological changes

    Non-permanent GPS data for regional-scale kinematics: reliable deformation rate before the 6 April, 2009, earthquake in the L'Aquila area

    Get PDF
    A GPS-based geodetic study at a regional scale requires the availability of a dense network that is characterized by 10 km to 30 km spacing, typically followed in a few continuous GPS stations (CGPSs) and several non-permanent GPS stations (NPSs). As short observation times do not allow adequate noise modeling, NPS data need specific processing where the main differences between NPSs and CGPSs are taken into account: primarily time-series length and antenna repositioning error. The GPS data collected in the 1999-2007 time-span from non-permanent measurement campaigns in the central Apennine area (Italy) that was recently hit by the Mw 6.3 L'Aquila earthquake (April 6, 2009) are here further analyzed to compute a reliable strain-rate field at a regional scale. Moreover, areas characterized by different kinematics are recognized, and a complete characterization of the regional-scale kinematics is attempted. These new data can be interpreted as indicators from the viewpoint of seismic risk assessment

    Analyzing Virtual Reference Station for GPS surveying: experiments and applications in a test site of the northern Apennine (Italy).

    Get PDF
    The availability of a GPS network of 10-20 km mean size, provides good topographical support for the measurement of ground displacements, even at a local scale such as a landslide. In particular, a series of multitemporal kinematic or rapid-static GPS acquisitions of a landslide allows a good characterization of its displacements if the measurements are referred to a GPS reference network. Nevertheless, a wider network formed by stations located at long distances, for example at several tens of kilometers, characterized by large spacing, can lead to results affected by high noise, degrading the accuracy of final point positions. In order to obtain an adequate GPS reference network, some virtual reference stations (VRSs) can be introduced, even if a network refinement based on VRS cannot reach the same accuracy of a real local network. Some experiments, including measurements on a real landslide, have been performed in order to evaluate the performance of this technique. The results point out that the standard deviation of the obtained solutions is about two or three times larger than those which can be reached using a real local network

    Monitoring of a coastal zone by independent fast photogrammetric surveys: The case of Monterosso a Mare (Ligurian Sea, Italy)

    Get PDF
    The Structure-from-Motion photogrammetry (SfM) allows a fast and easy data acquisition and a highly automated data processing, leading to accurate photorealistic point clouds. The results of a SfM-based modeling of the coastal zone of Monterosso a Mare (Eastern Liguria, Italy) are shown here. Four photogrammetric surveys of the area were carried out from both moving surface (boat) and aerial (Unmanned Aerial Vehicle) platforms. The corresponding results were compared in order to provide information about precision and model reliability from fast ad cheap SfM surveys carried out without Ground Control Points (GCPs). The important issue of scale factor evaluation was solved by means of selection of points easily recognizable in each point cloud and measurement of the length of the polyline that connects these points. The ratio between the lengths of the polyline defined on a point cloud and the corresponding polyline defined in a metric reference frame provided the scale factor. The results highlight that the SfM technique can be used in emergency conditions, where GCPs cannot be used, and is compatible with a floating platform-based observation, leading to point clouds whose resolution is some centimeters for an acquisition distance of 100-150 m.Published73-817A. Geofisica per il monitoraggio ambientaleN/A or not JC

    Geodetic deformation Across the Central Apennines from GPS Data in the time span 1999-2003

    Get PDF
    Abstract During the time span 1999-2003 was set up and repeatedly surveyed a not permanent GPS network located across one of the highest seismic areas of the central Apennines (Italy). The Central Apennine Geodetic Network (CA-GeoNet), extends across Umbria, Abruzzo, Marche and Lazio regions, in an area of ?180x130 km, from Tyrrhenian to the Adriatic sea. It consists in 125 GPS stations distributed at 3-5 km average grid and includes 7 permanent GPS stations operated by the Italian Space Agency (ASI) and the Istituto Nazionale di Geofisica and Vulcanologia (INGV). With the aim to estimate the active strain rate across this part of the chain, the GPS sites have been located on the main geological units of the area and across the typical basin and range structures, related with the main seismogenic faults. In this paper we show the network and the first results obtained for a subset of 23 stations that have been occupied at least during three repeated campaigns, in the time span 1999-2003. Data analysis, performed by Bernese 4.2 software, shows an extensional rate normal to the chain, in agreement with geological and seismic data. The strain rates in the inner chain are ranging from 12x10-9±11yr-1 to 16x10-9±11yr-1 and from -14x10-9±11yr-1 to -3x10-9±11yr-1. This result provides an improved estimation of the ongoing deformation of this area with respect to previous studies and is in agreement with the style of deformation inferred from seismicity and with the features of the main seismogenic sources from recent geological and seismological investigations

    Photogrammetric Surveys: the Case of Monterosso a Mare (Ligurian Sea, Italy)

    Get PDF
    Abstract The Structure-from-Motion photogrammetry (SfM) allows a fast and easy data acquisition and a highly automated data processing, leading to accurate photorealistic point clouds. The results of a SfM-based modeling of the coastal zone of Monterosso a Mare (Eastern Liguria, Italy) are shown here. Four photogrammetric surveys of the area were carried out from both moving surface (boat) and aerial (Unmanned Aerial Vehicle) platforms. The corresponding results were compared in order to provide information about precision and model reliability from fast ad cheap SfM surveys carried out without Ground Control Points (GCPs). The important issue of scale factor evaluation was solved by means of selection of points easily recognizable in each point cloud and measurement of the length of the polyline that connects these points. The ratio between the lengths of the polyline defined on a point cloud and the corresponding polyline defined in a metric reference frame provided the scale factor. The results highlight that the SfM technique can be used in emergency conditions, where GCPs cannot be used, and is compatible with a floating platform-based observation, leading to point clouds whose resolution is some centimeters for an acquisition distance of 100-150 m

    GPS surveys in the foreland-foredeep tectonic system of Southeastern Sicily: first results

    Get PDF
    The Hyblean plateau (Southeastern Sicily) is characterised by three main tectonic structural trends: the first, NNW-SSE striking, runs on the easternmost part of the plateau and is linked to the Hyblean-Maltese fault system; the second runs along the western part of the plateau with a NNE-SSW direction and is characterised by a sinistral strike slip motion, like the Scicli fault; the third ENE-WSW striking, characterises the northernmost part of the area, including the Scordia-Lentini graben. We analysed GPS data collected in a dense network located in the northern area of the Hyblean plateau during 1998 and 2000, between the towns of Catania and Syracuse. Data from Noto, Matera and Cagliari IGS stations, were included in the processing to connect this network to the International Terrestrial Reference Frame (ITRF). The comparison between 1998 and 2000 data sets shows an average northward motion of the GPS stations located south of the Gela-Catania foredeep. Site velocities decrease from south to north and show a weak internal deformation of the northernmost part of the Hyblean plateau
    • …
    corecore