8 research outputs found

    Boswellic acid formulations are not suitable for treatment of pediatric high-grade glioma due to tumor promoting potential

    No full text
    Background and aim: Pediatric high-grade gliomas (pedHGG) comprise a very poor prognosis. Thus, parents of affected children are increasingly resorting to complementary and alternative medicine (CAM), among those Boswellia extracts. However, nothing is known about the therapeutic effectiveness of their active substances, Boswellic acids (BA) in pedHGG. Thus, we aimed to investigate if the three main Boswellic acids (BA) present in Boswellia plants, alpha-boswellic acid (α-BA), beta-boswellic acid (β-BA) and 3-acetyl-11-keto-beta-boswellic acid (AKBA) hold any promising potential for treatment of affected pedHGG patients. Experimental procedure: Histone 3 (H3)-wildtype and H3.3K27M-mutant pedHGG cell lines were treated with BA, either alone or in combination with radio-chemotherapy with temozolomide. Cell viability, stemness properties, apoptosis, in ovo tumor growth and the transcriptome was investigated upon BA treatment. Results and conclusion: Interestingly, α-BA and β-BA treatment promoted certain tumor properties in both pedHGG cells. AKBA treatment reduced cell viability and colony growth accompanied by induction of slight anti-inflammatory effects especially in H3.3K27M-mutant pedHGG cells. However, no effects on apoptosis and in ovo tumor growth were found. In conclusion, besides positive anti-tumor effects of AKBA, tumor promoting effects were observed upon treatment with α-BA and β-BA. Thus, only pure AKBA formulations may be used to exploit any potential positive effects in pedHGG patients. In conclusion, the use of commercially available supplements with a mixture of different BA cannot be recommended due to detrimental effects of certain BA whereas pure AKBA formulations might hold some potential as therapeutic supplement for treatment of pedHGG patients

    High frequency of disease progression in pediatric spinal cord low-grade glioma (LGG): management strategies and results from the German LGG study group

    No full text
    BACKGROUND: Knowledge on management of pediatric spinal cord low-grade glioma (LGG) is scarce. METHODS: We analyzed clinical datasets of 128 pediatric patients with spinal LGG followed within the prospective multicenter trials HIT-LGG 1996 (n = 36), SIOP-LGG 2004 (n = 56), and the subsequent LGG-Interim registry (n = 36). RESULTS: Spinal LGG, predominantly pilocytic astrocytomas (76%), harbored KIAA1549-BRAF fusion in 14/35 patients (40%) and FGFR1-TACC1 fusion in 3/26 patients (12%), as well as BRAFV600E mutation in 2/66 patients (3%). 10-year overall survival (OS) and event-free survival (EFS) was 93% ± 2% and 38% ± 5%, respectively. Disseminated disease (n = 16) was associated with inferior OS and EFS, while age ≥11 years and total resection were favorable factors for EFS. We observed 117 patients following total (n = 24) or subtotal/partial resection (n = 74), biopsy (n = 16), or radiologic diagnosis only (n = 3). Eleven patients were treated first with chemotherapy (n = 9) or irradiation (n = 2). Up to 20.8 years after diagnosis/initial intervention, 73/128 patients experienced one (n = 43) or up to six (n = 30) radiological/clinical disease progressions. Tumor resections were repeated in 36 patients (range, 2-6) and 47 patients required nonsurgical treatment (chemotherapy, n = 20; radiotherapy, n = 10; multiple treatment lines, n = 17). Long-term disease control for a median of 6.5 (range, 0.02-20) years was achieved in 73/77 patients following one (n = 57) or repeated (n = 16) resections, and in 35/47 patients after nonsurgical treatment. CONCLUSIONS: The majority of patients experienced disease progression, even after years. Multiple interventions were required for more than a third, yet multimodal treatment enabled long-term disease control. Molecular testing may reveal therapeutic targets

    Transitioning to molecular diagnostics in pediatric high-grade glioma: experiences with the 2016 WHO classification of CNS tumors

    No full text
    Background: Pediatric neuro-oncology was profoundly changed in the wake of the 2016 revision of the WHO Classification of Tumors of the Central Nervous System. Practitioners were challenged to quickly adapt to a system of tumor classification redefined by molecular diagnostics. Methods: We designed a 22-question survey studying the impact of the revised WHO classification on pediatric high-grade glioma. The survey collected basic demographics, general attitudes, issues encountered, and opinions on pediatric subtypes. Participant answers were analyzed along socioeconomic lines utilizing the human development index (HDI) of the United Nations and membership in the group of seven (G7) world economic forum. Results: Four hundred and sixty-five participants from 53 countries were included, 187 pediatric neurooncologists (40%), 160 neuropathologists (34%), and 118 other experts (26%). When asked about pediatric high-grade glioma entities, participants from very high development countries preferred treating a patient based on genetic findings. Participants from high and medium development countries indicated using traditional histology and tumor location as mainstays for therapeutic decisions. Non-G7 countries tended to regard the introduction of molecularly characterized tumor entities as a problem for daily routine due to lack of resources. Conclusions: Our findings demonstrate an overall greater reliance and favorability to molecular diagnostics among very high development countries. A disparity in resources and access to molecular diagnostics has left some centers unable to classify pediatric high-grade glioma per the WHO classification. The forthcoming edition should strain to abate disparities in molecular diagnostic availability and work toward universal adaptation.</p

    Pediatric high-grade gliomas and the WHO CNS Tumor Classification-Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates

    No full text
    BACKGROUND: The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG). METHODS: We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists. RESULTS: 465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri. CONCLUSIONS: Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact

    General support of physical exercise programs in pediatric oncology but differences in perception by childhood cancer care professionals at European and North-African/Arab centers

    No full text
    Purpose: To explore the perception of physical exercise programs for pediatric oncology patients among childhood cancer care professionals. We also aimed at comparing such perceptions between cultures. Healthcare professionals’ endorsement may be essential for initiating and promoting such programs. Methods: An anonymous survey was designed and administered voluntarily to childhood cancer care professionals (including pediatric oncologists, nurses, and physiotherapists) in European, North-African and Arab pediatric oncology centers. Results: Five-hundred-and twenty-eight professionals from 14 sites answered the survey. Most respondents considered physical exercise programs as a suitable therapeutic approach for pediatric cancer patients with a potential positive contribution to survival (81%), wellbeing (82%), quality of life (80%), and self-esteem (75%). 91% of respondents would also support the future introduction of physical exercise programs into standard pediatric oncological care. There was a comparatively higher appreciation of physical exercise programs among European centers compared to North-African / Arab centers. Conclusion: We registered a broad acceptance of physical exercise programs among all European and North-African / Arab childhood cancer care professionals. The positive perception was independent of any pre-existing experience with such programs and seems therefore representative. This finding may encourage the further promotion of physical exercise programs in pediatric oncology

    Pediatric high-grade gliomas and the WHO CNS Tumor Classification - Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates

    Get PDF
    Background: The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG). Methods: We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists. Results: 465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri. Conclusions: Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact

    Drug Induced Retinopathy

    No full text
    corecore