19 research outputs found

    A solvent-resistant halogen bond

    Get PDF
    The effect of solvent on the stabilities of complexes involving a single H-bond or halogen-bond (X-bond) has been quantified. Association constants for binary complexes of 4-(phenylazo)phenol, molecular iodine, tetramethylurea and tetramethylthiourea have been measured in fifteen different solvents by UV/vis absorption and 1H NMR titration experiments. The stabilities of the H-bonded complexes decrease by more than three orders of magnitude with increasing solvent polarity. In contrast, the X-bonded complex of molecular iodine with tetramethylthiourea is remarkably insensitive to the nature of the solvent (association constants measured in alkanes and alcohols are similar). The results suggest that, in contrast to H-bonds, where electrostatics determine thermodynamic stability, charge-transfer interactions make a major contribution to the stability of these X-bonded complexes rendering them resistant to increases in solvent polarity

    A comparison of C-F and C-H bond activation by zerovalent Ni and Pt: a density functional study

    No full text
    Density functional theory indicates that oxidative addition of the C−F and C−H bonds in C6F6 and C6H6 at zerovalent nickel and platinum fragments, M(H2PCH2CH2PH2), proceeds via initial exothermic formation of an η2-coordinated arene complex. Two distinct transition states have been located on the potential energy surface between the η2-coordinated arene and the oxidative addition product. The first, at relatively low energy, features an η3-coordinated arene and connects two identical η2-arene minima, while the second leads to cleavage of the C−X bond. The absence of intermediate C−F or C−H σ complexes observed in other systems is traced to the ability of the 14-electron metal fragment to accommodate the η3-coordination mode in the first transition state. Oxidative addition of the C−F bond is exothermic at both nickel and platinum, but the barrier is significantly higher for the heavier element as a result of strong 5dπ−pπ repulsions in the transition state. Similar repulsive interactions lead to a relatively long Pt−F bond with a lower stretching frequency in the oxidative addition product. Activation of the C−H bond is, in contrast, exothermic only for the platinum complex. We conclude that the nickel system is better suited to selective C−F bond activation than its platinum analogue for two reasons: the strong thermodynamic preference for C−F over C−H bond activation and the relatively low kinetic barrier

    Light-controlled ion switching: direct observation of the complete nanosecond release and microsecond recapture cycle of an azacrown-substituted [(bpy)Re(CO)3L]+ complex

    No full text
    A [(bpy)Re(CO)3L]+ complex (bpy = 2,2‘-bipyridine) in which L contains an azacrown ether (MacQueen, D. B.; Schanze, K. S. J. Am. Chem. Soc. 1991, 113, 6108) acts as a reversible light-controlled switch of alkali and alkaline earth metal cations bound to the azacrown, as observed directly by time-resolved UV−vis spectroscopy. Excitation to the metal-to-ligand charge-transfer (MLCT) state of the metal-complexed form, [(bpy)Re(CO)3L]+-Mn+, results in cation release on the nanosecond time scale for Mn+ = Li+, Na+, Ca2+, and Ba2+, with Li+ and Na+ being released more rapidly than Ca2+ and Ba2+; by contrast, Mg2+ is not released. After decay to the ground state, [(bpy)Re(CO)3L]+ recaptures metal cations on the microsecond time scale to restore the starting thermal equilibrium. A multistep rebinding mechanism is observed for Li+ and Na+, in which the cation attaches initially to the azacrown nitrogen atom before binding to the equilibrium position within the azacrown ring. The excited states and other intermediates in the cation release-and-recapture cycle have been observed directly in real time, and their decay rate constants have been determined as a function of cation identity, enabling a generalized light-controlled cation-switching mechanism to be developed for this generic molecular design

    Picosecond forward electron transfer and nanosecond back electron transfer in an azacrown-substituted [(bpy)Re(CO)3(L)]+ complex: direct observation by time-resolved UV-visible absorption spectroscopy

    No full text
    Intramolecular electron transfer in the excited state of a [(bpy)ReI(CO)3(L)]+ complex (bpy = 2,2‘-bipyridine), in which L contains a pendant azacrown ether that acts as an electron donor (L = N-[4-(4,7,10,13-tetraoxa-1-azacyclopentadecyl)benzoyl]-4-aminopyridine), has been studied directly using picosecond and nanosecond time-resolved UV−visible absorption spectroscopy. Picosecond studies show that the metal-to-ligand charge-transfer (MLCT) state produced on excitation, [(bpy•-)ReII(CO)3(L)]+, undergoes forward electron transfer with a rate constant of kFET = 2.0 × 109 s-1 to generate a ligand-to-ligand charge-transfer (LLCT) state, [(bpy•-)ReI(CO)3(L•+)]+, in which the metal has been reduced back to Re(I) and charge separation has been effected between the bipyridine and azacrown ligands. Nanosecond studies show that the LLCT state returns to the ground state by back electron transfer from the bipyridine to azacrown ligand, with a rate constant of kBET = 5.3 × 107 s-1. Studies of complexes in which the azacrown complex is protonated, or is absent, demonstrate that intramolecular electron transfer to form the LLCT state does not occur in these cases. Forward electron transfer in the azacrown complex takes place on the picosecond time scale: it is weakly exoergonic and occurs in the Marcus normal region, with electronic coupling between the azacrown ligand and the rhenium metal center of ca. 100 cm-1. Back electron transfer takes place on the nanosecond time scale: it is strongly exoergonic and occurs in the Marcus inverted region, with much weaker electronic coupling between the bipyridine and azacrown ligands. The rapid formation of a long-lived charge-separated state indicates that this molecule has a suitable design for a photochemical device

    Bond energy M-C/H-C correlations: dual theoretical and experimental approach to the sensitivity of M-C bond strength to substituents

    No full text
    DFT methods are used to quantify the relationship between M–C and H–C bond energies; for MLn = Re(5-C5H5)(CO)2H and fluorinated aryl ligands, theoretical and experimental investigations of ortho-fluorine substitution indicate a much larger increase in the M–C than in the H–C bond energy, so stabilising C–H activation products
    corecore