34 research outputs found

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    SIMPLE SUMMARY: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. ABSTRACT: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Targeting hif-1α regulatory pathways as a strategy to hamper tumor-microenvironment interactions in cll

    Get PDF
    The hypoxia-inducible factor 1 (HIF-1) and the CXCL12/CXCR4 axis regulate the interaction of chronic lymphocytic leukemia cells and the tumor microenvironment. However, the interconnections occurring between HIF-1 and the CXCL12/CXCR4 axis are not fully elucidated. Here, we demonstrate that the CXCL12/CXCR4 axis plays a pivotal role in the positive regulation of the α subunit of HIF-1 (HIF-1α) that occurs in CLL cells co-cultured with stromal cells (SC). Inhibitors acting at different levels on CXCR4 downstream signalling counteract the SC-induced HIF-1α upregulation in CLL cells, also hindering the SC-mediated pro-survival effect. HIF-1α inhibition also exerts off-tumor effects on the SC component, inducing the downregulation of target genes, including CXCL12. Consistently, our data show that pretreatment of leukemic cells and/or SC with idelalisib effectively abrogates the SC-mediated survival support. A combined on-tumor and off-tumor inhibition of HIF-1α was also observed in idelalisib-treated patients, who showed, along with a downregulation of HIF-1α target genes in leukemic cells, a significant decrease in CXCL12 serum concentration and changes in the bone marrow microenvironment. Our data demonstrate that the targeting of HIF-1α or its regulatory pathways acts at the tumor- and SC-level, and may be an appealing strategy to overcome the microenvironment-mediated protection of CLL cells

    Ruxolitinib

    No full text
    corecore