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Simple Summary: In chronic lymphocytic leukemia (CLL), the interplay between the neoplastic
clone and the tumor microenvironment largely contributes to leukemia survival, tumor propagation
and drug resistance. A better understanding of the molecular circuits sustaining the biological
effects of this microenvironment-induced support is fundamental for designing targeted treatment
strategies that can be beneficial, especially for high-risk patients who fail standard therapy. In our
study, we show that the targeting of the transcription factor HIF-1α or its regulatory pathways
disrupts the mutual interactions occurring between the tumor microenvironment and CLL cells
and exerts anti-tumor effects, by acting both at the leukemic cell- and stromal cell-level. HIF-1α
and its regulatory pathways possibly represent appealing targets in the quest for novel strategies to
overcome microenvironment-mediated tumor support in CLL.

Abstract: The hypoxia-inducible factor 1 (HIF-1) and the CXCL12/CXCR4 axis regulate the in-
teraction of chronic lymphocytic leukemia cells and the tumor microenvironment. However, the
interconnections occurring between HIF-1 and the CXCL12/CXCR4 axis are not fully elucidated.
Here, we demonstrate that the CXCL12/CXCR4 axis plays a pivotal role in the positive regulation
of the α subunit of HIF-1 (HIF-1α) that occurs in CLL cells co-cultured with stromal cells (SC).
Inhibitors acting at different levels on CXCR4 downstream signalling counteract the SC-induced
HIF-1α upregulation in CLL cells, also hindering the SC-mediated pro-survival effect. HIF-1α in-
hibition also exerts off-tumor effects on the SC component, inducing the downregulation of target
genes, including CXCL12. Consistently, our data show that pretreatment of leukemic cells and/or SC
with idelalisib effectively abrogates the SC-mediated survival support. A combined on-tumor and
off-tumor inhibition of HIF-1α was also observed in idelalisib-treated patients, who showed, along
with a downregulation of HIF-1α target genes in leukemic cells, a significant decrease in CXCL12
serum concentration and changes in the bone marrow microenvironment. Our data demonstrate that
the targeting of HIF-1α or its regulatory pathways acts at the tumor- and SC-level, and may be an
appealing strategy to overcome the microenvironment-mediated protection of CLL cells.

Keywords: chronic lymphocytic leukemia; tumor microenvironment; hypoxia inducible factor-1α;
CXCL12/CXCR4 axis; drug resistance
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1. Introduction

The hypoxia inducible factor 1 (HIF-1) transcription factor plays a pivotal role in
cellular responses to hypoxia, both in normal and in neoplastic tissues, where it is of-
ten upregulated. In tumor cells, HIF-1 supports metabolic adaptation, neoangiogenesis,
cell survival and migration, with an overall disease-promoting effect [1]. HIF-1 is a het-
erodimer consisting of a constitutively expressed HIF-1β subunit and an inducible HIF-1α
subunit [2]. HIF-1α expression and activity are regulated upon cellular oxygen concentra-
tion, but also through non-canonical regulation via the activation of multiple intracellular
signalling pathways [3,4].

In chronic lymphocytic leukemia (CLL) cells, HIF-1α is constitutively expressed com-
pared to normal B cells [5], and it acts as an important regulator of the interplay between
the neoplastic clone and the tumor microenvironment. The interaction with stromal cells
(SC) induces HIF-1α in CLL cells, through an increased activity of the RAS/ERK1-2,
RHOA/RHOA kinase and PI3K/AKT pathways, contributing to drug resistance mecha-
nisms, leukemia survival and tumor propagation [6–8]. The already reported anti-tumor
effects of HIF-1α inhibition are in part the result of a perturbation of the molecular circuits
sustaining microenvironment-mediated protection from apoptosis [7,8]. However, the
underlying mechanisms have not been completely elucidated, and it is currently unknown
whether SC-induced HIF-1α expression in CLL cells relies on direct cell-to-cell contact or
soluble factors.

In CLL, the CXCL12/CXCR4 axis is one of the main players in the microenvironment-
induced pro-survival support [9], and its inhibition is able to render CLL cells more
susceptible to spontaneous and drug-induced apoptosis [10]. CLL cells constitutively ex-
press functional CXCR4 [11] which, upon the binding with CXCL12 (also known as stromal
cell–derived factor-1, SDF-1), activates a multitude of intracellular pathways, including
ERK1-2 and PI3K/AKT, whose inhibition overcomes SC-mediated drug resistance [12,13].
In the neoplastic niche, the non-leukemic cell component is also exposed to hypoxia and
HIF-1α-dependent signalling, which contribute to the creation of an immunosuppressive
and pro-tumor microenvironment [14]. The function of virtually all immune cell types
can be directly or indirectly modulated by hypoxia [15]. Moreover, in endothelial cells,
HIF-1α is crucial in driving neo-angiogenesis, overall supporting tumor growth and pro-
gression [16]. In human bone marrow (BM)-derived SC, hypoxia and subsequent HIF-1α
activation have an impact on metabolic signature, differentiation, migration and prolif-
eration [17]. However, whether HIF-1α promotes CXCL12 production by BM-derived
SC of CLL patients, thus leading to CXCR4 activation and SC-induced drug-resistance in
leukemic cells, is currently unknown.

The purpose of the present study was to evaluate the possible interconnections be-
tween the CXCL12/CXCR4 axis and the transcription factor HIF-1α in CLL, and to eluci-
date the role of HIF-1α regulatory pathways, both at the tumor cells- and SC-level, in the
protection exerted by SC towards apoptosis in leukemic cells.

2. Materials and Methods
2.1. Patients’ Samples

A total of 105 patients with CLL were included in the study (Table S1). The diagnosis
of CLL was made following the International Workshop on CLL-National Cancer Insti-
tute guidelines [18]. Peripheral blood (PB) or BM samples were collected after patients’
informed consent, in accordance with the Declaration of Helsinki and approval by the
local Ethics Committee. Samples were collected when patients were treatment-naïve or off
therapy for at least one year. In selected experiments, samples were collected from patients
receiving treatment with idelalisib plus rituximab according to the approved indication: PB
was collected before treatment start and after 1 and 6 months of treatment, and BM biopsies
were performed for clinical purposes before treatment start and after at least 12 months
of therapy.
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2.2. Cell Lines and Cell Culture

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient using
Ficoll-Hypaque (Sigma-Aldrich, Milan, Italy). The anti-CD19 PerCp Vio700 and the anti-
CD5-APC monoclonal antibodies (Miltenyi Biotec, Bologna, Italy) were used to evaluate
the percentage of CLL cells in PBMC by flow cytometry. A FACSCalibur (Becton Dickinson,
Mountain View, CA, USA) and a BD Accuri C6 flow cytometer (BD Bioscences, San José,
CA, USA) were used for data acquisition. Data analysis was performed by FlowJo software
(Tree Star, Inc, Ashland, OR, USA). The magnetic activated cell sorting (MACS) method
(Miltenyi Biotec, Bologna, Italy) was used to purify tumor cells, when the percentage of
CD19+/CD5+ cells was lower that 90%.

BM aspirate samples were lysed using a red blood cells lysis solution (Miltenyi Biotec,
Bologna, Italy). Patient-derived bone marrow stromal cells (BMSC) were generated from
16 patients with CLL, as previously described [19]. The M2-10B4 murine SC line (ATCC
#CRL-1972) was also used.

Serum was obtained from the centrifugation of PB samples and stored at −80 ◦C
until use.Patient-derived cells and SC line were cultured in RPMI-1640 medium (Life
Technology, Carlsbad, CA, USA) with 10% fetal bovine serum and penicillin/streptomycin
(Life Technology, Carlsbad, CA, USA), at 37 ◦C, 5% CO2. CLL cells (106 cells) were
cultured in the presence or absence of M2-10B4 SC (5 × 105 cells) and exposed to CXCL12
100 ng/mL (Human SDF-1α/CXCL12; Miltenyi Biotec, Bologna, Italy), CXCR4 antagonist
AMD3100 5 µg/mL (Genzyme, Europe B.V., Naarden, The Netherlands), simvastatin 1 µM
(Sigma Aldrich, Milan, Italy), ERK1-2 kinase inhibitor PD98059 1 µM (Sigma Aldrich,
Milan, Italy), PI3K inhibitor idelalisib 10 µM, unless otherwise specified (Selleckchem,
Munich, Germany), HIF-1α inhibitor BAY87-2243 1 µM (Selleckchem, Munich, Germany)
and fludarabine 10 µM (arabinosyl-2-fluoroadenine, dephosphorylated nucleoside form
of fludarabine; Sigma Aldrich, Milan, Italy) for 30 min, 6 h or 48 h. The medium of M2-
10B4 SC cultured for 2 days was collected and used in CLL cells-SC 30 min co-culture.
For inhibitors titration experiments, we exposed M2-10B4 SC (5 × 105/mL) for 48 h to
idelalisib and BAY87-2243 at indicated increasing concentrations. For each compound, the
concentrations used for in vitro cell culture were selected based on our previous experience
and on data from the literature [6,8,10,20,21].

The MEBCYTO-Apoptosis Kit (MBL Medical and Biological Laboratories, Nagoya,
Japan) was used to assess cell viability by staining with Annexin-V/Propidium Iodide
(Ann-V/PI) and flow cytometry.

2.3. Western Blot (WB) Analysis

The Nuclear Extract Kit (Active Motif, La Hulpe, Belgium) was used to extract cell
proteins and to separate cytosolic and nuclear fractions, which were then resolved by
SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA).
The following monoclonal antibodies were used: anti-RAS (Millipore, Bedford, MA, USA);
anti-p(Thr202/Tyr204, Thr185/Tyr187)-ERK1–2 (Millipore, Bedford, MA, USA); anti-ERK1-
2 (Millipore, Bedford, MA, USA); anti-p(Ser 473)AKT (Millipore, Bedford, MA, USA);
anti-AKT (Millipore, Bedford, MA, USA); anti-HIF-1α (BD Biosciences, San José, CA,
USA). To control the equal protein loading we used the following antibodies: anti-ACTIN
(Sigma Aldrich, Milan, Italy), anti-GAPDH, anti-TUBULIN, anti-TATA-box binding protein
(TBP) and anti-PCNA (all antibodies are from Santa Cruz Biotechnology Inc., Heidelberg,
Germany). Secondary peroxidase-conjugated antibodies (Bio-Rad, Hercules, CA, USA)
were used. The detection of the isoprenylated membrane-associated RAS protein (RAS-
GTP) and total cytosolic form was per-formed by pull down-assay using the Ras Activation
Assay kit (Millipore, Bedford, MA, USA) as previously described [22] and immunoblot.

Blot images were acquired with a ChemiDocTM Touch Imaging System device (Bio-
Rad Laboratories, Milan, Italy). The ImageJ software (NIH, Bethesda, MD, USA) was used
to perform densitometric analysis of western blot band intensity. The band intensity of the
proteins of interest was normalized on the correspondent housekeeping proteins.
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2.4. Akt and HIF-1α Activity

Akt activity was measured with the AKT Kinase Activity Assay Kit (Abcam, Cam-
bridge, UK), as per manufacturer’s instructions. Nuclear proteins were extracted using
the Nuclear Extract Kit (Active Motif, Rixensart, Belgium), and quantified. The activity of
HIF-1α was assessed in nuclear extracts using the TransAM™ HIF-1α Transcription Factor
Assay Kit (Active Motif, Rixensart, Belgium), according to manufacturer’s instructions.
Data are expressed as U absorbance/mg cell proteins (U/mg prot).

2.5. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

RNA was extracted and reverse-transcribed using the QuantiTect Reverse Transcrip-
tion Kit (Qiagen, Hilden, Germany). RT-PCR was performed using IQ−SYBR Green
Supermix (Bio-Rad, Hercules, CA, USA), according to the manufacturer’s instructions.
The primer sequences were designed with the qPrimerDepot software (accessed date: 7
September 2020, http://primerdepot.nci.nih.gov/). The primer sequences were: CA9:
5′-GTGCCTATGAGCAGTTGCTGTC-3′ and 3′-AAGTAGCGGCTGAAGTCAGAGG-5′;
CXCR4: 5′-CTCCTCTTTGTCATCACGCTTCC-3′ and 3′-GGATGAGGACACTGCTGTAGAG-
5′; CXCL12: 5′-TGAGAGCTCGCTTTGAGTGA-3′ and 3′-CACCAGGACCTTCTGTGGAT-
5′; ENO1: 5′-GCTCCGGGACAATGATAAGA-3′, 5′-TCCATCCATCTCGATCATCA-3′;
GLUT1: 5′-CCTGCAGTTTGGCTACAACA-3′ and 3′-TAACGAAAAGGCCCACAGAG-5′;
S14 (housekeeping): 5′-GGTGCAAGGAGCTGGGTAT-3′ and 3′-TCCAGGGGTCTTGGTC-
CTATTT-5′; VEGF: 5′-ATCTTCAAGCCATCCTGTGTGC-3′, 5′-GCTCACCGCCTCGGCTTGT-
3′. The comparative CT method was used to calculate CA9, CXCR4, CXCL12, GLUT1,
ENO1 and VEGF expression relative to S14 product, used as a housekeeping gene, with the
Bio-Rad Software Gene Expression Quantitation (Bio-Rad, Hercules, CA, USA).

2.6. CXCL12 Quantification

CXCL12 was measured on patients’ serum using the human CXCL12/SDF1α Quan-
tikine ELISA kit (R&D Systems, Minneapolis, MN, USA), according to the manufacturer’s
instructions. For each experiment, a titration curve was prepared using serial dilutions
of the standard CXCL12 of the kit. The curve was then used to extrapolate the CXCL12
concentration in the samples.

2.7. Immunohistochemistry

Three-µm-thick sections from Bouin’s solution-fixed, paraffin-embedded BM biopsies
were stained with haematoxylin-eosin and immunostained with an automated stainer device
(Ventana-Ultra, Ventana Medical Systems, Tucson, AZ, USA) using polyclonal antibodies
against CD34 (clone QBEnd/10; #NCL-L-END; Novocastra; Leica Microsystems, Milton
Keynes, UK) at a 1:50 dilution at 37 ◦C for 36 min, and CD68 (clone PG-M1, cod. M0876; Dako,
Carpinteria, CA, USA) at a 1:50 dilution at 25 ◦C for 30 min. Sinusoid-like vessel density and
CD68+ cellular extensions were analyzed in 10 random high power fields employing 40×
magnification using a standard light microscope (Leica, Wetzlar, Germany).

2.8. Statistical Analysis

GraphPad Prism software (version 6.01, San Diego, CA, USA) was used to per-
form statistical analysis of data (paired and unpaired t-test). Results are expressed as
mean ± standard error of the mean (SEM), unless otherwise specified. Statistical signifi-
cance was defined as a p-value <0.05.

3. Results
3.1. CXCL12/CXCR4 Axis Is a Main Regulator of SC-Induced HIF-1α Activation in CLL Cells

We have previously demonstrated that exposure of CLL cells to SC induces the
activation of RAS/ERK1-2 and PI3K/AKT signalling pathways, leading to an upregulation
of the downstream transcription factor HIF-1α [6]. Here, we show that this SC-induced
upregulation is mainly mediated by the CXCL12/CXCR4 axis. Indeed, after 48 h culture,

http://primerdepot.nci.nih.gov/
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the CXCR4 antagonist AMD3100 was capable of abrogating the SC-induced activation of
RAS/ERK1-2 and PI3K/AKT signalling, and the downstream increase in HIF-1α amount
and transcriptional activity (p < 0.05) (Figure 1). This finding was further corroborated
by the observation that exposure to CXCL12 substantially recapitulated the stimulation
exerted by SC on RAS/ERK1-2 and PI3K/AKT signalling, and on HIF-1α accumulation
and activity. Again, these effects were significantly and almost fully counteracted by
the CXCR4 antagonist AMD3100 (p < 0.05) (Figure 1). The ability of AMD3100 to block
the CXCL12/CXCR4 axis was already evident after 6 h exposure, and to a lesser extent
after 30 min, confirming that HIF-1α inhibition is a targeted effect rather than being a
consequence of cell death potentially induced by AMD3100 (Figures S1–S3).

3.2. Inhibitors of CXCR4 Downstream Signalling Effectively Counteract SC- and
CXCL12-Induced HIF-1α Upregulation in CLL Cells

We tested whether the inhibitors of RAS (i.e., simvastatin), ERK1-2 (i.e., PD98059) and
PI3K/AKT (i.e., idelalisib), acting at different levels of the signalling pathways, affected
SC- and CXCL12-induced HIF-1α upregulation in primary CLL cells (Figure 2A). When
freshly isolated leukemic cells were cultured with simvastatin, PD98059, idelalisib, as
well as with HIF-1α inhibitor BAY87-2243, we observed a decrease in HIF-1α amount and
activity (p < 0.001) (Figure 2B). Interestingly, the same inhibitory effect was maintained
also when intracellular pathways were upregulated by co-culture with SC (p < 0.0001)
(Figure 2C) or exposure to CXCL12 (p < 0.001) (Figure 2D). These data demonstrate that
CXCR4-dependent signalling pathways can be effectively targeted at different levels thus
hindering the CXCL12-induced accumulation and activation of HIF-1α.

3.3. The Targeted Inhibition of HIF-1α Regulatory Pathways Hinders the SC-Mediated Protection
from Spontaneous and Fludarabine-Induced Cell Death

SC are known to protect CLL cells from spontaneous apoptosis and fludarabine-
induced cytotoxicity. HIF-1α expression correlates with in vitro resistance to fludarabine
and the HIF-1α inhibitor BAY87-2243 enhances fludarabine cytotoxicity [8]. Therefore, we
wondered whether the inhibition of HIF-1α regulatory pathways may exert similar effects.
In line with previous data, we observed that BAY87-2243 was effective in counteracting the
SC-mediated protection toward spontaneous and fludarabine-induced cell death (p < 0.001)
(Figure 3A). Of note, simvastatin, PD98059 and idelalisib also produced a significant
decrease in leukemic cells’ viability, partially abrogating the protective effect exerted by SC
toward spontaneous and fludarabine-induced cell death (p < 0.05) (Figure 3B–D).

3.4. The Inhibition of PI3K/AKT Pathway and Downstream HIF-1α Impairs CXCL12 Production
in SC

PI3Kδ is expressed and functional in SC from patients with CLL, where it plays a
role in regulating CLL-SC interactions [23]. Therefore, we next investigated whether the
targeting of PI3K/AKT signalling pathway could modulate HIF-1α, not only in the tumor
clone but also in SC. To this aim, the SC line M2-10B4, as well as SC derived from the BM of
CLL patients, were cultured alone or in the presence of idelalisib or BAY87-2243. Neither
idelalisib nor BAY87-2243 affected the viability and morphology of SC after 48 h culture
(data not shown). Results from our experiments showed that idelalisib is able to decrease
the active form of AKT in SC, and that both idelalisib and BAY87-2243 effectively reduce
the cytosolic and nuclear amount of HIF-1α, also impairing its transcriptional activity
(p < 0.01) (Figure 4A–C). Consequently, we found that 48 h in vitro exposure of SC to
idelalisib or BAY87-2243 significantly reduces the expression of the HIF-1α target genes
CXCL12, CA9, ENOA, GLUT1 and VEGF (p < 0.001) (Figure 4D). Titration experiments
confirmed that exposure of SC to increasing concentrations of idelalisib determines a
parallel progressive decrease in HIF-1α levels (Figure S4A). A dose-dependent reduction
in HIF-1α expression was also evident when SC were treated with different concentrations
of BAY87-2243 (Figure S4B).
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Figure 1. The CXCL12/CXCR4 axis plays a central role in the SC-mediated triggering of HIF-1α regulatory pathways. 
Primary CLL cells were cultured for 48 h in presence of M2-10B4 SC or CXCL12. In selected conditions, the CXCR4 antag-
onist AMD3100 was added. Both SC and CXCL12 induced an increase in the amount of GTP-bound RAS (RAS-GTP) and 
of the active phosphorylated form of ERK1-2 (pERK1-2) (A), and in the phosphorylation and activity of AKT (B,C). Ac-
cordingly, CLL cells cultured with SC or CXCL12 displayed an increase in the cytosolic and nuclear amount of HIF-1α 
(D), and in HIF-1α activity (E). The addition of the CXCR4 antagonist AMD3100 abrogated the inducing effects mediated 
both by SC and CXCL12 at all levels. In (A,B,D) a representative blot (with relative Unique Patient Number, UPN), to-
gether with the corresponding cumulative band intensity data of 6 independent experiments, respectively, is shown. Box 

Figure 1. The CXCL12/CXCR4 axis plays a central role in the SC-mediated triggering of HIF-1α regulatory pathways.
Primary CLL cells were cultured for 48 h in presence of M2-10B4 SC or CXCL12. In selected conditions, the CXCR4 antagonist
AMD3100 was added. Both SC and CXCL12 induced an increase in the amount of GTP-bound RAS (RAS-GTP) and of the
active phosphorylated form of ERK1-2 (pERK1-2) (A), and in the phosphorylation and activity of AKT (B,C). Accordingly,
CLL cells cultured with SC or CXCL12 displayed an increase in the cytosolic and nuclear amount of HIF-1α (D), and in
HIF-1α activity (E). The addition of the CXCR4 antagonist AMD3100 abrogated the inducing effects mediated both by SC
and CXCL12 at all levels. In (A,B,D) a representative blot (with relative Unique Patient Number, UPN), together with the
corresponding cumulative band intensity data of 6 independent experiments, respectively, is shown. Box and whiskers
plots show median values, 25–75% percentiles, and minimum and maximum values for each group. In (C,E) bar graphs
represent mean results and SEM (n = 6). Repositioned gel lanes are indicated by vertical lines. **** p < 0.0001, *** p < 0.001,
** p < 0.01 and * p < 0.05. Please find the whole western blot in the Supplementary File 1.
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Figure 2. Targeting the RAS/ERK1-2 and PI3K/AKT signalling inhibits SC- and CXCL12-induced HIF-1α upregulation.
A schematic representation of RAS/ERK1-2 and PI3K/AKT HIF-1α regulatory pathways, and the target protein of each
inhibitor used in the following experimental setting (i.e., simvastatin, Sim; PD98059, PD; idelalisib, Ide; BAY87-2243, BAY)
is depicted in (A). CLL cells cultured for 48 h in the absence (B) and in presence of M2-10B4 SC (C) or CXCL12 (D) were
exposed to simvastatin, PD98059, idelalisib or BAY87-2243 and evaluated for HIF-1α expression and activity. Treatment
with targeted inhibitors reduced the cytosolic and nuclear amount of HIF-1α and downregulated its activity, both in the
absence and in the presence of SC or CXCL12. In (B–D) a representative blot with UPN and cumulative band intensity
data obtained from the analysis of 9, 9 and 5 independent experiments, respectively, is shown. Repositioned gel lanes are
indicated by vertical lines. Box and whiskers plots show median values, 25–75% percentiles, and minimum and maximum
values for each group; each point represents a single sample. **** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05. Please
find the whole western blot in the Supplementary File 1.
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Figure 3. Inhibitors of HIF-1α regulatory pathways counteract SC protection toward spontaneous and fludarabine-induced
leukemic cell death. CLL cells were cultured alone or in the presence of M2-10B4 SC. In all experiments, the co-culture with SC
resulted in a significantly higher viability as compared to CLL cells cultured alone. Cell cultures were exposed to BAY87-2243
(BAY), simvastatin (Sim), PD98059 (PD) or idelalisib (Ide), alone or in association with fludarabine (F-ara-A). Cell viability
was evaluated after 48 h treatment. The addition of BAY87-2243 (A), simvastatin (B), PD98059 (C) and idelalisib (D) to
CLL/SC co-cultures significantly reduced the viability of CLL cells compared to untreated co-cultures, both in the absence
and in the presence of fludarabine (left and right panels, respectively). Box and whiskers plots show median values of alive
CLL cells percentages, considered as Ann-V-negative and PI-negative (AnnV-/PI-), 25–75% percentiles, and minimum and
maximum values for each group; each point represents a single sample value (n = 23 and n = 19 in (A); n = 37 and n = 36 in (B);
n = 9 and n = 8 in (C); n = 12 and n = 11 in (D)). **** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05.
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Figure 4. The targeting of PI3K/AKT signalling pathway downmodulates HIF-1α and its target genes expression in SC. 
M2-10B4 SC and patient-derived BMSC were cultured in absence or in presence of idelalisib (Ide) or BAY87-2243 (BAY) 
for 48 h. Idelalisib effectively inhibits pAKT expression in SC (A). Both drugs induced a decrease in cytosolic and nuclear 
HIF-1α expression (B), and in HIF-1α activity (C) after 48 h culture. CXCL12, CA9, ENOA, GLUT1 and VEGF mRNA were 
also quantified, showing that idelalisib and BAY87-2243 significantly reduced HIF-1α target genes’ expression in SC (D). 
In (A), a representative blot (with relative UPN, when applicable) with cumulative band intensity data obtained from the 
analysis of 4 replicates for M2-10B4 SC and 7 patient-derived BMSC independent experiments is shown. In (B), a repre-
sentative blot (with UPN, when applicable) with cumulative band intensity data obtained from the analysis of 6 replicates 
for M2-10B4 SC and 11 patient-derived BMSC independent experiments is shown. In (A–C) box and whiskers plots show 

Figure 4. The targeting of PI3K/AKT signalling pathway downmodulates HIF-1α and its target genes expression in SC.
M2-10B4 SC and patient-derived BMSC were cultured in absence or in presence of idelalisib (Ide) or BAY87-2243 (BAY) for
48 h. Idelalisib effectively inhibits pAKT expression in SC (A). Both drugs induced a decrease in cytosolic and nuclear HIF-1α
expression (B), and in HIF-1α activity (C) after 48 h culture. CXCL12, CA9, ENOA, GLUT1 and VEGF mRNA were also
quantified, showing that idelalisib and BAY87-2243 significantly reduced HIF-1α target genes’ expression in SC (D). In (A),
a representative blot (with relative UPN, when applicable) with cumulative band intensity data obtained from the analysis
of 4 replicates for M2-10B4 SC and 7 patient-derived BMSC independent experiments is shown. In (B), a representative blot
(with UPN, when applicable) with cumulative band intensity data obtained from the analysis of 6 replicates for M2-10B4 SC
and 11 patient-derived BMSC independent experiments is shown. In (A–C) box and whiskers plots show median values,
25–75% percentiles and minimum and maximum values for each group. In (C) each point represents one experiment with
M2-10B4 SC (n = 5) or one patient-derived SC sample (n = 6). In (D), bar graphs represent mean results obtained from
the analysis of 4 replicates for M2-10B4 SC and 7 patient-derived BMSC independent experiments, together with SEM.
Repositioned gel lanes are indicated by vertical lines. **** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05. Please find the
whole western blot in the Supplementary File 1.
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3.5. Idelalisib Hampers Stroma-Derived Survival Signals by Targeting HIF-1α at the SC- and
CLL Cell-Level

We then investigated whether the ability of idelalisib to hamper the SC-mediated
protection toward leukemic cell death also relies on its off-tumor effects on the stromal
counterpart. To this aim, CLL cells and M2-10B4 SC were left untreated or exposed to
idelalisib for 24 h, and then co-cultured for additional 48 h in the absence or presence
of fludarabine (as outlined in Figure 5A). In CLL cells pre-treated with idelalisib, before
co-culturing them with untreated SC, we observed a significant decrease in 48 h cell vi-
ability, both in the absence and in the presence of fludarabine (p < 0.01). Interestingly,
pretreatment with idelalisib of the sole SC component also determined a significant in-
crease in spontaneous and fludarabine-induced leukemic cell death after 48 h of co-culture
(p < 0.05). Consistently, pre-treatment of both components (i.e., leukemic cells and SC) with
idelalisib produced a further reduction in cell viability after 48 h of co-culture compared to
the pre-treatment of each single component (p < 0.01) (Figure 5B,C).
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Figure 5. Idelalisib overcomes SC-mediated CLL cell protection bilaterally, acting at the leukemic cell- and SC-level. A
schematic representation of the experiment design is depicted in (A). CLL cells and M2-10B4 SC were left untreated (CLLΦ

and SCΦ) or exposed to idelalisib (CLLIde and SCIde) for 24 h, washed, and then co-cultured in different combinations
(CLLΦ + SCΦ, CLLIde + SCΦ, CLLΦ + SCIde, CLLIde + SCIde) for an additional 48 h, with or without fludarabine (F-ara-A).
The final CLL cell viability was evaluated. Pretreatment with idelalisib of CLL cells, SC or both, significantly reduced
the cell viability compared to the untreated combination, both in the absence (B) and in the presence of fludarabine (C).
Box and whiskers plots represent median values of alive cells percentages, considered as Ann-V-negative and PI-negative
(AnnV-/PI), 25–75% percentiles and minimum and maximum values for each group; each point represents a single sample
value (n = 7). *** p < 0.001, ** p < 0.01 and * p < 0.05.
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3.6. Treatment with Idelalisib Affects HIF-1α Expression and Activity in CLL Patients

To corroborate our in vitro findings, we collected PBMC and serum samples from
patients with CLL before and during idelalisib treatment. In all analyzed cases, the HIF-1α
amount in CLL cells was consistently reduced after 1 month of treatment, as compared
to the baseline (Figure 6A). According to the reduced level of HIF-1α, the expression of
CXCR4, CA9, ENOA, GLUT1 and VEGF target genes in CLL cells was impaired (Figure 6B).
Notably, in line with in vitro data, we also observed a significant reduction in the serum
levels of CXCL12 after 6 months of idelalisib treatment, compared to the baseline (p < 0.05)
(Figure 6C). We also analyzed BM biopsy samples collected before and during idelal-
isib treatment from three CLL patients. We observed a reduction in the sinusoidal-like
vessel density after idelalisib therapy compared to the baseline. In addition, the CD68+
monocyte-macrophage component, which is characterized by a round-shape morphology
in the absence of cellular extensions, was enriched in the BM of idelalisib-treated patients
compared to baseline samples, where dendritic cells were instead predominant (Figure 6D).
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with idelalisib were evaluated for HIF-1α expression by WB and for the expression of the HIF-1α
target genes CXCR4, CA9, ENOA, GLUT1 and VEGF by RT-PCR. Compared to the baseline, a re-
duced cytosolic and nuclear expression of HIF-1α (A), and a decreased expression of the analyzed
target genes (B) were detected. In patients’ sera, CXCL12 concentration decreased after 6 months
of treatment with idelalisib (C). Immunohistochemical analyses performed on BM sections col-
lected from CLL patients during idelalisib treatment showed, compared to the baseline, a reduced
vessel density, highlighted by anti-CD34 immunostaining, and an enrichment in the CD68+ mono-
cytes/macrophages characterized by a round shape morphology and no cellular extensions (D). In
(A), blots from the analysis of 5 independent experiments (with UPN) and cumulative band intensity
data obtained are shown. In (B), bar graphs represent mean results obtained from 6 experiments
together with SEM. In (C), a line graph represents individual data values for the same sample in
each timepoint. In (D), immunohistochemistry of a representative experiment out of 3 is shown.
** p < 0.01 and * p < 0.05. Please find the whole western blot in the Supplementary File 1.

4. Discussion

In this study, we investigated the role of HIF-1α and its regulatory pathways in
the interactions between CLL cells and their protective tumor microenvironment. We
demonstrated that, in leukemic cells, the CXCL12/CXCR4 axis plays a central role in the
SC-induced modulation of HIF-1α through the activation of RAS/ERK1-2 and PI3K/AKT
signalling pathways. Interestingly, HIF-1α inhibition also affects the SC component, re-
sulting in a transcriptional downregulation of several target genes, including CXCL12.
Therefore, the targeting of HIF-1α acts both at the leukemic cell- and SC-level, abrogating
the pro-survival effect exerted by stroma interactions on CLL cells and also counteracting
the protection toward fludarabine-induced cell death. According to this finding, the tar-
geting of PI3K/AKT pathway through idelalisib results in a dual effect in patients with
CLL: an on-tumor effect leading to a reduced expression of HIF-1α and its target genes in
leukemic cells, and an off-tumor effect leading to decreased concentrations of CXCL12 in
patients’ sera.

HIF-1α is overexpressed in CLL cells [5], and this overexpression is more pronounced
in cells carrying unfavorable biological characteristics such as unmutated immunoglob-
ulin heavy chain variable region genes (IGHV) or TP53 disruption [6,8]. In CLL, HIF-1α
fosters different tumor-promoting mechanisms: it mediates the adaptation of leukemic
cells to hypoxia, functions as a pro-survival factor and is implicated in drug-resistance
mechanisms [6,8,24]. In addition, HIF-1α has shown to critically regulate several genes,
such as CXCR4, involved in mediating homing and retention of CLL cells into the BM and
spleen [7]. Within these tissues, leukemic cells interact with SC and other microenviron-
mental elements, which are known to protect them from spontaneous apoptosis and confer
resistance to variety of drugs, including chemotherapy [6,8,21] and targeted drugs [25,26].
We have already reported that both hypoxia and the co-culture with SC induce in CLL cells
a further increase in the nuclear expression and transcriptional activity of HIF-1α resting
levels [6,8]. From the molecular standpoint, this HIF-1α upregulation is mediated by the
activation of defined molecular circuits within the leukemic cells: the RAS/ERK1-2 and
PI3K/AKT signalling pathways. Nonetheless, whether SC induce HIF-1α upregulation
through a cell–cell contact or by paracrine factors is so far unknown.

The CXCL12/CXCR4 axis plays a leading role in the CLL cell-tumor microenviron-
ment interactions [9]. The CXCR4 antagonist AMD3100 affects pseudoemperopolesis,
migration and prosurvival signals induced by CXCL12 on CLL cells [27]. In CLL, the role of
ERK1-2 and AKT as downstream signal transducers of CXCL12/CXCR4 axis has been pos-
tulated by different authors [12,28,29], but a complete overview of the CXCR4 transduction
pathway is still lacking. Our data show that, in CLL cells, the SC-induced upregulation of
the intracellular pathways leading to an increased expression and transcriptional activity of
HIF-1α (i.e., RAS/ERK1-2 and PI3K/AKT signalling) is fully recapitulated by exposure of
leukemic cells to CXCL12, and is completely abrogated by the CXCR4 antagonist AMD3100.
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This latter observation provides a more comprehensive characterization of the molecular
circuits downstream to CXCR4 at the leukemic cell level.

It has been previously reported that CXCR4 expression in CLL cells is under the
transcriptional control of HIF-1α [7]. This observation, together with our data showing
that CXCR4 signalling in turn regulates HIF-1α expression and transcriptional activity,
corroborate the hypothesis of a reciprocal interaction between CXCL12/CXCR4 axis and
HIF-1α in regulating the interactions between CLL cells and SC. Our findings thus support
the notion of HIF-1α as a key regulator of the interactions of CLL neoplastic cells with SC.
Although CXCL12 is undoubtedly a central molecule in SC-mediated HIF-1α upregulation,
we cannot rule out a complementary role of cell–cell contact interactions, which should
be therefore investigated to gain a full overview of the mechanisms regulating HIF-1α in
CLL cells.

We next investigated whether HIF-1α also played a role in controlling the tumor sup-
portive functions of the SC compartment. It has been shown that CXCL12 gene expression in
endothelial cells is regulated by the transcription factor HIF-1α, and that this chemokine is
selectively expressed in a model of soft-tissue ischemia in vivo, in direct proportion to reduced
oxygen tension [30]. Additionally, treatment of hypercholesterolemia with high-doses statins
results in a decrease in circulating CXCL12 levels, which are inversely correlated with the
administered dose of statin [31]. More recently, Ali et al. showed that PI3Kδ is expressed and
functional in SC from both healthy donors and patients with CLL, where it plays a role in
regulating CLL-stromal cell interactions [23], although they did not propose an explanatory
mechanism for their observation. As far as we know, this is the first article demonstrating
that CXCL12 production by SC is under the transcriptional control of HIF-1α. Indeed, the
modulation of HIF-1α with its specific inhibitor BAY87-2243, or through the upstream target-
ing of PI3K with idelalisib, results in a transcriptional downregulation of CXCL12, together
with several other target genes implicated in cell migration, metabolism and angiogenesis. In
keeping with the hypothesis of a wide-ranging beneficial effect of antagonizing HIF-1α in the
non-leukemic microenvironment, previous findings show that hypoxia-driven HIF-1α over-
expression impairs the function of a variety of immune populations and causes hematopoietic
dysfunctions in the BM of CLL patients [14,32].

As above mentioned, the role of SC and CXCL12/CXCR4 axis in conferring drug
resistance to CLL cells has been repeatedly demonstrated [10,21]. We have recently shown
that the targeting of HIF-1α with BAY87-2243 is effective in overcoming the intrinsic TP53-
dependent and the SC-induced fludarabine resistance of CLL cells [8]. In line with these
previous findings, here, we observed that the inhibition of HIF-1α regulatory pathways
by simvastatin, idelalisib or PD98059 is paralleled by a reduction in CLL cells’ viability
and an increased sensitivity to fludarabine. Of note, pretreatment of CLL cells and/or SC
with idelalisib counteracts the protection exerted by SC toward spontaneous cell death and
fludarabine-induced cytotoxicity observed in co-culture conditions. These data corroborate
the notion that HIF-1α bilaterally orchestrates tumor-microenvironment interactions by
controlling, on one side, the SC-mediated production of CXCL12, and on the other side,
the final pro-survival activity exerted by this chemokine on leukemic target cells. In
line with this hypothesis, generated on the basis of our in vitro data, HIF-1α regulatory
pathways can be simultaneously targeted in the stromal and neoplastic compartment
with the aim of disrupting their pro-tumor cooperation. Interestingly, this dual action
on HIF-1α, which reflects on-tumor and off-tumor effects, was also confirmed on a small
cohort of idelalisib-treated patients, who showed, in parallel to a decreased expression of
the pro-survival factor HIF-1α in the leukemic cell compartment, a reduction in CXCL12
serum concentrations and a modification of the monocytic and endothelial architecture
in the BM microenvironment. The anti-tumor effect exerted by idelalisib through HIF-1α
inhibition in cancer cells, as well as in SC, would certainly need a validation in a larger
cohort of CLL patients.
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5. Conclusions

Taken together, our results confirm the central role of HIF-1α in the interactions
between the tumor microenvironment and CLL cells, also elucidating the interplay with
the CXCL12/CXCR4 axis. We also show that the disruption of these mutual interactions
through the targeting of HIF-1α or its regulatory pathways exerts anti-tumor effects by
acting at both the leukemic cell- and SC-levels, possibly representing an appealing strategy
for overcoming microenvironment-mediated tumor support.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers13122883/s1. “Supplementary Information”, including Table S1: Summary of patients’
characteristics; Figure S1: The CXCL12/CXCR4 axis plays a central role in the SC-mediated triggering
of HIF-1α regulatory pathways; Figure S2: The exposure of CLL cells to AMD3100 does not reduce
tumor cell viability; Figure S3: The CXCL12/CXCR4 axis plays a central role in the SC-mediated
triggering of HIF-1α regulatory pathways; Figure S4: Increasing concentrations of idelalisib or BAY87-
2243 determine a progressive reduction of HIF-1α levels in SC. “Supplementary File 1”, including
the whole blots for the representative experiments showed in the manuscript.
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Table S1. Summary of patients’ characteristics 

Unique 

Patient 

Number 

(UPN)  Sex   IGHV 

Del(17p) 

and/or 

TP53 

mutation  Therapy 

UPN01  m  M  N  off‐therapy 

UPN02  f  M  Y  off‐therapy 

UPN03  m  UM  Y  off‐therapy 

UPN04  f  UM  Y  off‐therapy 

UPN05  m  UM  N  off‐therapy 

UPN07  f  M/UM  N  off‐therapy 

UPN08  f  M    N*  off‐therapy 

UPN09  m  UM  N  off‐therapy 

UPN10  f  UM  Y  off‐therapy 

UPN12  m  M  N  off‐therapy 

UPN13  m  M    N*  off‐therapy 

UPN14  m  UM  Y  off‐therapy 

UPN15  m  UM  N  off‐therapy 

UPN16  m  UM  N  off‐therapy 

UPN17  m  UM  N  off‐therapy 

UPN18  m  M  Y  off‐therapy 

UPN19  m  M  N  off‐therapy 

UPN20  m  M    N*  off‐therapy 

UPN21  m  UM  N  off‐therapy 

UPN22  f  na  Y  off‐therapy 

UPN23  m  UM  N  off‐therapy 

UPN24  m  na  N  off‐therapy 

UPN25  m  UM  N  off‐therapy 

UPN26  m  M  Y  off‐therapy 

UPN27  m  UM     N*  off‐therapy 

UPN28  f  M  Y  off‐therapy 

UPN29  m  UM  N  off‐therapy 

UPN30  m  UM  N  off‐therapy 

UPN31  m  UM  N  off‐therapy 

UPN32  m  UM  Y  off‐therapy 

UPN33  f  na  na  off‐therapy 

UPN34  m  M  N  off‐therapy 

UPN35  m  na  Y  off‐therapy 

UPN36  m  UM  N  off‐therapy 

UPN37  m  UM  N  off‐therapy 

UPN38  m  UM  N  off‐therapy 

UPN39  f  M  N  off‐therapy 

UPN40  m  M  N  off‐therapy 

UPN41  m  UM  N  off‐therapy 

UPN42  f  UM  N  off‐therapy 

UPN43  f  na  Y  off‐therapy 

UPN44  m  M    N*  off‐therapy 
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UPN45  m  UM  N  off‐therapy 

UPN46  m  UM  Y  off‐therapy 

UPN47  m  na  na  off‐therapy 

UPN48  f  M  N  off‐therapy 

UPN49  m  M  N  off‐therapy 

UPN50  m  UM  N  off‐therapy 

UPN51  f  UM  Y  off‐therapy 

UPN52  m  UM  Y  off‐therapy 

UPN53  f  UM  N  off‐therapy 

UPN54  f  UM  N  off‐therapy 

UPN55  f  na  Y  off‐therapy 

UPN56  m  M  Y  off‐therapy 

UPN57  f  M  Y  off‐therapy 

UPN58  m  na  Y  off‐therapy 

UPN59  m  UM  N  off‐therapy 

UPN60  f  M  N  off‐therapy 

UPN61  f  UM  N  off‐therapy 

UPN62  m  M  N  off‐therapy 

UPN63  m  na  na  off‐therapy 

UPN64  m  na  N  off‐therapy 

UPN65  f  UM  Y  off‐therapy 

UPN66  m  M  N  off‐therapy 

UPN67  f  M  N  off‐therapy 

UPN68  m  M  Y  off‐therapy 

UPN69  m  UM  N  off‐therapy 

UPN71  m  UM  N  off‐therapy 

UPN72  m  UM  Y  off‐therapy 

UPN73  f  na  na  off‐therapy 

UPN74  m  na  Y  off‐therapy 

UPN75  m  UM  Y  off‐therapy 

UPN77  m  na  N  off‐therapy 

UPN78  f  UM  N  off‐therapy 

UPN79  m  M  N  off‐therapy 

UPN80  f  UM  N  off‐therapy 

UPN81  m  na  na  off‐therapy 

UPN82  m  UM    N*  off‐therapy 

UPN83  m  UM  N  off‐therapy 

UPN84  m  M  N  off‐therapy 

UPN85  f  UM  N  off‐therapy 

UPN87  f  na    N*  off‐therapy 

UPN88  f  UM  N  off‐therapy 

UPN89  m  na  N  off‐therapy 

UPN90  m  M  N  off‐therapy 

UPN91  m  na  na  off‐therapy 

UPN92  m  UM  N  off‐therapy 

UPN93  m  na  na  off‐therapy 

UPN94  m  M  N  off‐therapy 
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UPN95  m  na    N*  off‐therapy 

UPN96  f  UM  N  off‐therapy 

UPN97  m  UM  Y  off‐therapy 

UPN98  m  na  na  off‐therapy 

UPN99  m  M  N  off‐therapy 

UPN100  m  M    N*  off‐therapy 

UPN101  f  M  N  off‐therapy 

UPN102  m  UM  N  off‐therapy 

UPN103  m  na    N*  off‐therapy 

UPN104  f  M    N*  off‐therapy 

UPN105  f  UM  N  off‐therapy 

UPN06  m  UM  N  idelalisib 

UPN11  f  M  N  idelalisib 

UPN70  f  M  N  idelalisib 

UPN76  f  UM  Y  idelalisib 

UPN86  m  UM  Y  idelalisib 

 

Abbreviations: UPN, unique patient number; m, male; f, female; IGHV, immunoglobulin heavy chain variable 

region; M, mutated; UM, unmutated; na, not available; * Del(17p) is not present as assessed by fluorescence in 

situ hybridization, data on TP53 mutation is not available.    
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Figure S1 
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Figure  S1.  The  CXCL12/CXCR4  axis  plays  a  central  role  in  the  SC‐mediated  triggering  of HIF‐1α 

regulatory pathways. Primary CLL cells were cultured for 6 hours in presence of M2‐10B4 SC or CXCL12. In 

selected conditions, the CXCR4 antagonist AMD3100 was added. Both SC and CXCL12 induced an increase 

in the amount of GTP‐bound RAS (RAS‐GTP) and of the active phosphorylated form of ERK1‐2 (pERK1‐2) 

(A), and in the phosphorylation and activity of AKT (B,C). Accordingly, CLL cells cultured with SC or CXCL12 

displayed an  increase  in  the cytosolic and nuclear amount of HIF‐1α  (D), and  in HIF‐1α activity  (E). The 

addition of the CXCR4 antagonist AMD3100 abrogated the inducing effects mediated both by SC and CXCL12 

at all levels, except for pERK1‐2 when CLL cells were exposed to SC. In (A,B,D) a representative blot (with 

relative Unique Patient Number, UPN) together with the corresponding cumulative band intensity data of 4 

independent experiments is shown. Box and whiskers plots represent median values, 25%‐75% percentiles, 

and minimum and maximum values for each group. In (C,E) bar graphs represent mean results and SEM (n = 

4). Vertical lines have been inserted to indicate repositioned gel lanes. **** p<0.0001, *** p<0.001, ** p<0.01 and 

*p<0.05. Please find the whole western blot in the supplementary file 1. 
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Figure S2 

 

  

 

Figure S2. The exposure of CLL cells to AMD3100 does not reduce tumor cell viability. Primary CLL cells 

were cultured for 6 hours in presence of M2‐10B4 SC or CXCL12. In selected conditions, the CXCR4 antagonist 

AMD3100 was added. There  is no  significant difference  in  the viability of CLL  cells  cultured  in different 

conditions.  Box  and  whiskers  plots  represent  median  values,  25%‐75%  percentiles,  and  minimum  and 

maximum values for each group (n = 4). 
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Figure S3 
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Figure S3. The CXCL12/CXCR4 axis plays a  central  role  in  the SC‐mediated  triggering of HIF‐1α 

regulatory pathways. Primary CLL cells were cultured for 30 minutes in presence of M2‐10B4 SC or CXCL12. 

In selected conditions, the CXCR4 antagonist AMD3100 was added. Both SC and CXCL12 induced an increase 

in the amount of GTP‐bound RAS (RAS‐GTP) and of the active phosphorylated form of ERK1‐2 (pERK1‐2) 

(A).  By  contrast,  the  phosphorylation  and  activity  of  AKT  was  not  significantly  modulated  by  the 

microenvironmental stimuli, at this early timepoint (B‐C). CLL cells cultured with SC or CXCL12 displayed 

an increase in the cytosolic and nuclear amount of HIF‐1α (D), and in HIF‐1α activity (E). The addition of the 

CXCR4 antagonist AMD3100 abrogated the upregulation induced by SC and CXCL12 on RAS, ERK1‐2 and 

HIF‐1α.  In  (A,B,D)  a  representative  blot  (with  relative Unique  Patient Number, UPN)  together with  the 

corresponding cumulative band intensity data of 5 independent experiments is shown. Box and whiskers plots 

represent median values, 25%‐75% percentiles, and minimum and maximum values for each group. In (C,E) 

bar graphs represent mean results and SEM (n = 5). Vertical lines have been inserted to indicate repositioned 

gel  lanes.  ****  p<0.0001,  ***  p<0.001,  **  p<0.01  and  *p<0.05.  Please  find  the  whole  western  blot  in  the 

supplementary file 1. 



11 

 

Figure S4 

 

Figure S4. Increasing concentrations of  idelalisib or BAY87‐2243 determine a progressive reduction of 

HIF‐1α  levels  in SC. M2‐10B4 SC were cultured for 48 hours  in the presence of  increasing concentration of 

idelalisib (Ide, 0.01 μM, 0.1 μM, 0.5 μM, 1 μM or 10 μM) (A), or BAY87‐2243 (BAY, 0.001 μM, 0.01 μM, 0.1 μM, 

0.5 μM or 1 μM) (B). WB analyses of HIF‐1α protein expression for 1 representative experiment out of 2 and 

the  corresponding  cumulative  band  intensity  data  are  shown.  Please  find  the whole western  blot  in  the 

supplementary file 1. 

 


